Cargando…
Minimisation strategies for the determination of parton density functions
We discuss the current minimisation strategies adopted by research projects involving the determination of parton distribution functions (PDFs) and fragmentation functions (FFs) through the training of neural networks. We present a short overview of a proton PDF determination obtained using the cova...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/5/052007 http://cds.cern.ch/record/2300080 |
_version_ | 1780957090532032512 |
---|---|
author | Carrazza, Stefano Hartland, Nathan P. |
author_facet | Carrazza, Stefano Hartland, Nathan P. |
author_sort | Carrazza, Stefano |
collection | CERN |
description | We discuss the current minimisation strategies adopted by research projects involving the determination of parton distribution functions (PDFs) and fragmentation functions (FFs) through the training of neural networks. We present a short overview of a proton PDF determination obtained using the covariance matrix adaptation evolution strategy (CMA-ES) optimisation algorithm. We perform comparisons between the CMA-ES and the standard nodal genetic algorithm (NGA) adopted by the NNPDF collaboration. |
id | oai-inspirehep.net-1639278 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16392782021-05-03T20:33:32Zdoi:10.1088/1742-6596/1085/5/052007http://cds.cern.ch/record/2300080engCarrazza, StefanoHartland, Nathan P.Minimisation strategies for the determination of parton density functionshep-phParticle Physics - PhenomenologyParticle Physics - PhenomenologyWe discuss the current minimisation strategies adopted by research projects involving the determination of parton distribution functions (PDFs) and fragmentation functions (FFs) through the training of neural networks. We present a short overview of a proton PDF determination obtained using the covariance matrix adaptation evolution strategy (CMA-ES) optimisation algorithm. We perform comparisons between the CMA-ES and the standard nodal genetic algorithm (NGA) adopted by the NNPDF collaboration.arXiv:1711.09991CERN-TH-2017-241oai:inspirehep.net:16392782017-11-27 |
spellingShingle | hep-ph Particle Physics - Phenomenology Particle Physics - Phenomenology Carrazza, Stefano Hartland, Nathan P. Minimisation strategies for the determination of parton density functions |
title | Minimisation strategies for the determination of parton density functions |
title_full | Minimisation strategies for the determination of parton density functions |
title_fullStr | Minimisation strategies for the determination of parton density functions |
title_full_unstemmed | Minimisation strategies for the determination of parton density functions |
title_short | Minimisation strategies for the determination of parton density functions |
title_sort | minimisation strategies for the determination of parton density functions |
topic | hep-ph Particle Physics - Phenomenology Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1088/1742-6596/1085/5/052007 http://cds.cern.ch/record/2300080 |
work_keys_str_mv | AT carrazzastefano minimisationstrategiesforthedeterminationofpartondensityfunctions AT hartlandnathanp minimisationstrategiesforthedeterminationofpartondensityfunctions |