Cargando…
Machine learning challenges in theoretical HEP
In these proceedings we perform a brief review of machine learning (ML) applications in theoretical High Energy Physics (HEP-TH). We start the discussion by defining and then classifying machine learning tasks in theoretical HEP. We then discuss some of the most popular and recent published approach...
Autor principal: | Carrazza, Stefano |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/2/022003 http://cds.cern.ch/record/2300083 |
Ejemplares similares
-
Modeling NNLO jet corrections with neural networks
por: Carrazza, Stefano
Publicado: (2017) -
Towards the compression of parton densities through machine learning algorithms
por: Carrazza, Stefano, et al.
Publicado: (2016) -
HIP and HEP
por: Wiedemann, Urs Achim
Publicado: (2021) -
Minimisation strategies for the determination of parton density functions
por: Carrazza, Stefano, et al.
Publicado: (2017) -
MINLO t-channel single-top plus jet
por: Carrazza, Stefano, et al.
Publicado: (2018)