Cargando…

Novel Ways of Heat Removal from Highly Irradiated Superconducting Windings in Accelerator Magnets

Novel ideas of heat removal from superconducting windings in accelerator type magnets are investigated with the help of a recently developed and validated thermal model of a magnet cold mass implemented in COMSOL Multiphysics. Here the focus is on how to improve heat removal from the midplane of a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Bielert, Erwin R, Verweij, Arjan P, ten Kate, Herman H J
Lenguaje:eng
Publicado: 2012
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.phpro.2012.06.048
http://cds.cern.ch/record/2294834
Descripción
Sumario:Novel ideas of heat removal from superconducting windings in accelerator type magnets are investigated with the help of a recently developed and validated thermal model of a magnet cold mass implemented in COMSOL Multiphysics. Here the focus is on how to improve heat removal from the midplane of a superconducting quadrupole magnet, the area exposed to the highest radiation heat load. In addition, this part of the coil windings has the longest thermal path towards the heat sink and several thermal design improvements proposed in the past are not very effective here. It is shown that with minor changes in the geometrical design, the cooling of the midplane conductors can be strongly increased