Cargando…
Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism
We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterate...
Autores principales: | Broedel, Johannes, Duhr, Claude, Dulat, Falko, Tancredi, Lorenzo |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2018)093 http://cds.cern.ch/record/2300275 |
Ejemplares similares
-
Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral
por: Broedel, Johannes, et al.
Publicado: (2017) -
Elliptic polylogarithms and Feynman parameter integrals
por: Broedel, Johannes, et al.
Publicado: (2019) -
Elliptic polylogarithms and two-loop Feynman integrals
por: Broedel, Johannes, et al.
Publicado: (2018) -
Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
por: Broedel, Johannes, et al.
Publicado: (2018) -
Elliptic Feynman integrals and pure functions
por: Broedel, Johannes, et al.
Publicado: (2018)