Cargando…
Usage of machine learning for the separation of electroweak and strong $Z_{\gamma}$ production at the LHC experiments
Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variab...
Autores principales: | Petukhov, A M, Yu Soldatov, E |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/934/1/012028 http://cds.cern.ch/record/2310258 |
Ejemplares similares
-
Electroweak and strong production of SUSY at the LHC
por: Folgueras, S
Publicado: (2019) -
Machine Learning approach to $\gamma/\pi^0$ separation in the LHCb calorimeter
por: Chekalina, Viktoria, et al.
Publicado: (2018) -
The usage of the gLite Workload Management System by the LHC experiments
por: Sciaba’, A, et al.
Publicado: (2007) -
NAGLIB: usage of NAG products at CERN
por: CERN. Geneva, et al.
Publicado: (1992) -
MEASUREMENTS OF $Z\gamma$ AND $Z\gamma\gamma$ PRODUCTION IN PP COLLISIONS AT 8 TEV WITH THE ATLAS DETECTOR
por: Soldatov, Evgeny
Publicado: (2016)