Cargando…

Space charge and working point studies in the CERN Low Energy Ion Ring

The Low Energy Ion Ring (LEIR) is at the heart ofCERN’s heavy ion physics programme and was designed toprovide the high phase space densities required by the exper-iments at the Large Hadron Collider (LHC). LEIR is the firstsynchrotron of the LHC ion injector chain and it receives aquasi-continuous...

Descripción completa

Detalles Bibliográficos
Autores principales: Huschauer, A, Bartosik, H, Hancock, S, Kain, V
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.23727/CERN-Proceedings-2017-002.117
http://cds.cern.ch/record/2301811
Descripción
Sumario:The Low Energy Ion Ring (LEIR) is at the heart ofCERN’s heavy ion physics programme and was designed toprovide the high phase space densities required by the exper-iments at the Large Hadron Collider (LHC). LEIR is the firstsynchrotron of the LHC ion injector chain and it receives aquasi-continuous pulse of lead ions (Pb54+) from Linac3, ex-ploiting a sophisticated multi-turn injection scheme in bothtransverse and longitudinal planes. Seven of these pulses areinjected and accumulated, which requires continuous elec-tron cooling (EC) at low energy to decrease the phase spacevolume of the circulating beam in between two injections.Subsequently, the coasting beam is adiabatically capturedin two bunches, which are then accelerated and extractedtowards the Proton Synchrotron (PS). Figure 1 shows theLEIR magnetic cycle and the different steps required forbeam production.