Cargando…

Design of a RF Quadrupole Resonator for Landau Damping in HL-LHC

The design and optimization of a quadrupole resonator for transverse Landau damping in the High Luminosity Large Hadron Collider (HL-LHC) is presented. Two different cavity types are considered whose shape is determined by quadrupolar strength, surface peak fields, and beam coupling impedance. The l...

Descripción completa

Detalles Bibliográficos
Autores principales: Papke, Kai, Grudiev, Alexej
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-SRF2017-MOPB004
http://cds.cern.ch/record/2674095
Descripción
Sumario:The design and optimization of a quadrupole resonator for transverse Landau damping in the High Luminosity Large Hadron Collider (HL-LHC) is presented. Two different cavity types are considered whose shape is determined by quadrupolar strength, surface peak fields, and beam coupling impedance. The lower order and higher order mode (LOM and HOM) spectra of the optimized cavities are investigated and different approaches for their damping are proposed. Along an example, the required RF power and optimal external quality factor for the input coupler is derived.