Cargando…
Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber
Atmospheric oxidation is an important phenomenon which produces large quantities of low-volatility compounds such as sulfuric acid and oxidized organic compounds. Such species may be involved in the nucleation of particles and enhance their subsequent growth to reach the size of cloud condensation n...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5194/acp-18-2363-2018 http://cds.cern.ch/record/2310152 |
_version_ | 1780957858916990976 |
---|---|
author | Sarnela, Nina Jokinen, Tuija Duplissy, Jonathan Yan, Chao Nieminen, Tuomo Ehn, Mikael Schobesberger, Siegfried Heinritzi, Martin Ehrhart, Sebastian Lehtipalo, Katrianne Tröstl, Jasmin Simon, Mario Kürten, Andreas Leiminger, Markus Lawler, Michael J Rissanen, Matti P Bianchi, Federico Praplan, Arnaud P Hakala, Jani Amorim, Antonio Gonin, Marc Hansel, Armin Kirkby, Jasper Dommen, Josef Curtius, Joachim Smith, James N Petäjä, Tuukka Worsnop, Douglas R Kulmala, Markku Donahue, Neil M Sipilä, Mikko |
author_facet | Sarnela, Nina Jokinen, Tuija Duplissy, Jonathan Yan, Chao Nieminen, Tuomo Ehn, Mikael Schobesberger, Siegfried Heinritzi, Martin Ehrhart, Sebastian Lehtipalo, Katrianne Tröstl, Jasmin Simon, Mario Kürten, Andreas Leiminger, Markus Lawler, Michael J Rissanen, Matti P Bianchi, Federico Praplan, Arnaud P Hakala, Jani Amorim, Antonio Gonin, Marc Hansel, Armin Kirkby, Jasper Dommen, Josef Curtius, Joachim Smith, James N Petäjä, Tuukka Worsnop, Douglas R Kulmala, Markku Donahue, Neil M Sipilä, Mikko |
author_sort | Sarnela, Nina |
collection | CERN |
description | Atmospheric oxidation is an important phenomenon which produces large quantities of low-volatility compounds such as sulfuric acid and oxidized organic compounds. Such species may be involved in the nucleation of particles and enhance their subsequent growth to reach the size of cloud condensation nuclei (CCN). In this study, we investigate α-pinene, the most abundant monoterpene globally, and its oxidation products formed through ozonolysis in the Cosmic Leaving OUtdoor Droplets (CLOUD) chamber at CERN (the European Organization for Nuclear Research). By scavenging hydroxyl radicals (OH) with hydrogen (H2), we were able to investigate the formation of highly oxygenated molecules (HOMs) purely driven by ozonolysis and study the oxidation of sulfur dioxide (SO2) driven by stabilized Criegee intermediates (sCIs). We measured the concentrations of HOM and sulfuric acid with a chemical ionization atmospheric-pressure interface time-of-flight (CI-APi-TOF) mass spectrometer and compared the measured concentrations with simulated concentrations calculated with a kinetic model. We found molar yields in the range of 3.5–6.5 % for HOM formation and 22–32 % for the formation of stabilized Criegee intermediates by fitting our model to the measured sulfuric acid concentrations. The simulated time evolution of the ozonolysis products was in good agreement with measured concentrations except that in some of the experiments sulfuric acid formation was faster than simulated. In those experiments the simulated and measured concentrations met when the concentration reached a plateau but the plateau was reached 20–50 min later in the simulations. The results shown here are consistent with the recently published yields for HOM formation from different laboratory experiments. Together with the sCI yields, these results help us to understand atmospheric oxidation processes better and make the reaction parameters more comprehensive for broader use. |
id | oai-inspirehep.net-1663078 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | oai-inspirehep.net-16630782019-09-30T06:29:59Zdoi:10.5194/acp-18-2363-2018http://cds.cern.ch/record/2310152engSarnela, NinaJokinen, TuijaDuplissy, JonathanYan, ChaoNieminen, TuomoEhn, MikaelSchobesberger, SiegfriedHeinritzi, MartinEhrhart, SebastianLehtipalo, KatrianneTröstl, JasminSimon, MarioKürten, AndreasLeiminger, MarkusLawler, Michael JRissanen, Matti PBianchi, FedericoPraplan, Arnaud PHakala, JaniAmorim, AntonioGonin, MarcHansel, ArminKirkby, JasperDommen, JosefCurtius, JoachimSmith, James NPetäjä, TuukkaWorsnop, Douglas RKulmala, MarkkuDonahue, Neil MSipilä, MikkoMeasurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamberNuclear Physics - ExperimentAtmospheric oxidation is an important phenomenon which produces large quantities of low-volatility compounds such as sulfuric acid and oxidized organic compounds. Such species may be involved in the nucleation of particles and enhance their subsequent growth to reach the size of cloud condensation nuclei (CCN). In this study, we investigate α-pinene, the most abundant monoterpene globally, and its oxidation products formed through ozonolysis in the Cosmic Leaving OUtdoor Droplets (CLOUD) chamber at CERN (the European Organization for Nuclear Research). By scavenging hydroxyl radicals (OH) with hydrogen (H2), we were able to investigate the formation of highly oxygenated molecules (HOMs) purely driven by ozonolysis and study the oxidation of sulfur dioxide (SO2) driven by stabilized Criegee intermediates (sCIs). We measured the concentrations of HOM and sulfuric acid with a chemical ionization atmospheric-pressure interface time-of-flight (CI-APi-TOF) mass spectrometer and compared the measured concentrations with simulated concentrations calculated with a kinetic model. We found molar yields in the range of 3.5–6.5 % for HOM formation and 22–32 % for the formation of stabilized Criegee intermediates by fitting our model to the measured sulfuric acid concentrations. The simulated time evolution of the ozonolysis products was in good agreement with measured concentrations except that in some of the experiments sulfuric acid formation was faster than simulated. In those experiments the simulated and measured concentrations met when the concentration reached a plateau but the plateau was reached 20–50 min later in the simulations. The results shown here are consistent with the recently published yields for HOM formation from different laboratory experiments. Together with the sCI yields, these results help us to understand atmospheric oxidation processes better and make the reaction parameters more comprehensive for broader use.oai:inspirehep.net:16630782018 |
spellingShingle | Nuclear Physics - Experiment Sarnela, Nina Jokinen, Tuija Duplissy, Jonathan Yan, Chao Nieminen, Tuomo Ehn, Mikael Schobesberger, Siegfried Heinritzi, Martin Ehrhart, Sebastian Lehtipalo, Katrianne Tröstl, Jasmin Simon, Mario Kürten, Andreas Leiminger, Markus Lawler, Michael J Rissanen, Matti P Bianchi, Federico Praplan, Arnaud P Hakala, Jani Amorim, Antonio Gonin, Marc Hansel, Armin Kirkby, Jasper Dommen, Josef Curtius, Joachim Smith, James N Petäjä, Tuukka Worsnop, Douglas R Kulmala, Markku Donahue, Neil M Sipilä, Mikko Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title | Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title_full | Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title_fullStr | Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title_full_unstemmed | Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title_short | Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber |
title_sort | measurement–model comparison of stabilized criegee intermediate and highly oxygenated molecule production in the cloud chamber |
topic | Nuclear Physics - Experiment |
url | https://dx.doi.org/10.5194/acp-18-2363-2018 http://cds.cern.ch/record/2310152 |
work_keys_str_mv | AT sarnelanina measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT jokinentuija measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT duplissyjonathan measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT yanchao measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT nieminentuomo measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT ehnmikael measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT schobesbergersiegfried measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT heinritzimartin measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT ehrhartsebastian measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT lehtipalokatrianne measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT trostljasmin measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT simonmario measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT kurtenandreas measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT leimingermarkus measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT lawlermichaelj measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT rissanenmattip measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT bianchifederico measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT praplanarnaudp measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT hakalajani measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT amorimantonio measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT goninmarc measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT hanselarmin measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT kirkbyjasper measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT dommenjosef measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT curtiusjoachim measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT smithjamesn measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT petajatuukka measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT worsnopdouglasr measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT kulmalamarkku measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT donahueneilm measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber AT sipilamikko measurementmodelcomparisonofstabilizedcriegeeintermediateandhighlyoxygenatedmoleculeproductioninthecloudchamber |