Cargando…
Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of sing...
Autores principales: | , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5194/amt-10-3231-2017 http://cds.cern.ch/record/2310155 |
_version_ | 1780957859577593856 |
---|---|
author | Nichman, Leonid Järvinen, Emma Dorsey, James Connolly, Paul Duplissy, Jonathan Fuchs, Claudia Ignatius, Karoliina Sengupta, Kamalika Stratmann, Frank Möhler, Ottmar Schnaiter, Martin Gallagher, Martin |
author_facet | Nichman, Leonid Järvinen, Emma Dorsey, James Connolly, Paul Duplissy, Jonathan Fuchs, Claudia Ignatius, Karoliina Sengupta, Kamalika Stratmann, Frank Möhler, Ottmar Schnaiter, Martin Gallagher, Martin |
author_sort | Nichman, Leonid |
collection | CERN |
description | Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL.
We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds. |
id | oai-inspirehep.net-1663399 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16633992019-09-30T06:29:59Zdoi:10.5194/amt-10-3231-2017http://cds.cern.ch/record/2310155engNichman, LeonidJärvinen, EmmaDorsey, JamesConnolly, PaulDuplissy, JonathanFuchs, ClaudiaIgnatius, KaroliinaSengupta, KamalikaStratmann, FrankMöhler, OttmarSchnaiter, MartinGallagher, MartinIntercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experimentNuclear Physics - ExperimentOptical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.oai:inspirehep.net:16633992017 |
spellingShingle | Nuclear Physics - Experiment Nichman, Leonid Järvinen, Emma Dorsey, James Connolly, Paul Duplissy, Jonathan Fuchs, Claudia Ignatius, Karoliina Sengupta, Kamalika Stratmann, Frank Möhler, Ottmar Schnaiter, Martin Gallagher, Martin Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title | Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title_full | Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title_fullStr | Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title_full_unstemmed | Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title_short | Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment |
title_sort | intercomparison study and optical asphericity measurements of small ice particles in the cern cloud experiment |
topic | Nuclear Physics - Experiment |
url | https://dx.doi.org/10.5194/amt-10-3231-2017 http://cds.cern.ch/record/2310155 |
work_keys_str_mv | AT nichmanleonid intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT jarvinenemma intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT dorseyjames intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT connollypaul intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT duplissyjonathan intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT fuchsclaudia intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT ignatiuskaroliina intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT senguptakamalika intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT stratmannfrank intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT mohlerottmar intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT schnaitermartin intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment AT gallaghermartin intercomparisonstudyandopticalasphericitymeasurementsofsmalliceparticlesinthecerncloudexperiment |