Cargando…
Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene h...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5194/acp-17-4053-2017 http://cds.cern.ch/record/2310159 |
_version_ | 1780957860452106240 |
---|---|
author | Bernhammer, Anne-Kathrin Breitenlechner, Martin Keutsch, Frank N Hansel, Armin |
author_facet | Bernhammer, Anne-Kathrin Breitenlechner, Martin Keutsch, Frank N Hansel, Armin |
author_sort | Bernhammer, Anne-Kathrin |
collection | CERN |
description | Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs).
The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method.
Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup.
The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored. |
id | oai-inspirehep.net-1663403 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16634032019-09-30T06:29:59Zdoi:10.5194/acp-17-4053-2017http://cds.cern.ch/record/2310159engBernhammer, Anne-KathrinBreitenlechner, MartinKeutsch, Frank NHansel, ArminTechnical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber wallsNuclear Physics - ExperimentSources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.oai:inspirehep.net:16634032017 |
spellingShingle | Nuclear Physics - Experiment Bernhammer, Anne-Kathrin Breitenlechner, Martin Keutsch, Frank N Hansel, Armin Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title | Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title_full | Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title_fullStr | Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title_full_unstemmed | Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title_short | Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls |
title_sort | technical note: conversion of isoprene hydroxy hydroperoxides (isopoohs) on metal environmental simulation chamber walls |
topic | Nuclear Physics - Experiment |
url | https://dx.doi.org/10.5194/acp-17-4053-2017 http://cds.cern.ch/record/2310159 |
work_keys_str_mv | AT bernhammerannekathrin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls AT breitenlechnermartin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls AT keutschfrankn technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls AT hanselarmin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls |