Cargando…

Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls

Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene h...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernhammer, Anne-Kathrin, Breitenlechner, Martin, Keutsch, Frank N, Hansel, Armin
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.5194/acp-17-4053-2017
http://cds.cern.ch/record/2310159
_version_ 1780957860452106240
author Bernhammer, Anne-Kathrin
Breitenlechner, Martin
Keutsch, Frank N
Hansel, Armin
author_facet Bernhammer, Anne-Kathrin
Breitenlechner, Martin
Keutsch, Frank N
Hansel, Armin
author_sort Bernhammer, Anne-Kathrin
collection CERN
description Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.
id oai-inspirehep.net-1663403
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling oai-inspirehep.net-16634032019-09-30T06:29:59Zdoi:10.5194/acp-17-4053-2017http://cds.cern.ch/record/2310159engBernhammer, Anne-KathrinBreitenlechner, MartinKeutsch, Frank NHansel, ArminTechnical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber wallsNuclear Physics - ExperimentSources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.oai:inspirehep.net:16634032017
spellingShingle Nuclear Physics - Experiment
Bernhammer, Anne-Kathrin
Breitenlechner, Martin
Keutsch, Frank N
Hansel, Armin
Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title_full Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title_fullStr Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title_full_unstemmed Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title_short Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls
title_sort technical note: conversion of isoprene hydroxy hydroperoxides (isopoohs) on metal environmental simulation chamber walls
topic Nuclear Physics - Experiment
url https://dx.doi.org/10.5194/acp-17-4053-2017
http://cds.cern.ch/record/2310159
work_keys_str_mv AT bernhammerannekathrin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls
AT breitenlechnermartin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls
AT keutschfrankn technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls
AT hanselarmin technicalnoteconversionofisoprenehydroxyhydroperoxidesisopoohsonmetalenvironmentalsimulationchamberwalls