Cargando…

Characterization of the mass-dependent transmission efficiency of a CIMS

Knowledge about mass discrimination effects in a chemical ionization mass spectrometer (CIMS) is crucial for quantifying, e.g., the recently discovered extremely low volatile organic compounds (ELVOCs) and other compounds for which no calibration standard exists so far. Here, we present a simple way...

Descripción completa

Detalles Bibliográficos
Autores principales: Heinritzi, Martin, Simon, Mario, Steiner, Gerhard, Wagner, Andrea C, Kürten, Andreas, Hansel, Armin, Curtius, Joachim
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.5194/amt-9-1449-2016
http://cds.cern.ch/record/2310552
Descripción
Sumario:Knowledge about mass discrimination effects in a chemical ionization mass spectrometer (CIMS) is crucial for quantifying, e.g., the recently discovered extremely low volatile organic compounds (ELVOCs) and other compounds for which no calibration standard exists so far. Here, we present a simple way of estimating mass discrimination effects of a nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer. Characterization of the mass discrimination is achieved by adding different perfluorinated acids to the mass spectrometer in amounts sufficient to deplete the primary ions significantly. The relative transmission efficiency can then be determined by comparing the decrease of signals from the primary ions and the increase of signals from the perfluorinated acids at higher masses. This method is in use already for PTR-MS; however, its application to a CI-APi-TOF brings additional difficulties, namely clustering and fragmentation of the measured compounds, which can be treated with statistical analysis of the measured data, leading to self-consistent results. We also compare this method to a transmission estimation obtained with a setup using an electrospray ion source, a high-resolution differential mobility analyzer and an electrometer, which estimates the transmission of the instrument without the CI source. Both methods give different transmission curves, indicating non-negligible mass discrimination effects of the CI source. The absolute transmission of the instrument without the CI source was estimated with the HR-DMA method to plateau between the m∕z range of 127 and 568 Th at around 1.5 %; however, for the CI source included, the depletion method showed a steady increase in relative transmission efficiency from the m∕z range of the primary ion (mainly at 62 Th) to around 550 Th by a factor of around 5. The main advantages of the depletion method are that the instrument is used in the same operation mode as during standard measurements and no knowledge of the absolute amount of the measured substance is necessary, which results in a simple setup.