Cargando…
Demonstrating TTC-PON robustness and flexibility
In 2016, a TTC-PON (Timing, Trigger and Control system based on Passive Optical Networks) demonstrator was presented at TWEPP as an alternative to replace the TTC system, currently responsible for delivering timing, trigger and control commands in the LHC experiments. Towards a deployment foreseen f...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.313.0124 http://cds.cern.ch/record/2312296 |
Sumario: | In 2016, a TTC-PON (Timing, Trigger and Control system based on Passive Optical Networks) demonstrator was presented at TWEPP as an alternative to replace the TTC system, currently responsible for delivering timing, trigger and control commands in the LHC experiments. Towards a deployment foreseen for ALICE phase-1 upgrade, the system has been consolidated through flexible software implementation providing full configuration, complete calibration and extended monitoring and diagnostic tools. A new demonstrator setup was built with various FPGA platforms to test the system with an increased number of nodes and under different environmental conditions. This paper focuses on the TTC-PON system design with a discussion on its features and scaled-up tests. |
---|