Cargando…

Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders

This thesis contains both physics analysis and hardware studies. It consists of two primary sections: the results of a search for heavy Majorana mass neutrinos, using the event signature of same (like) sign charged electron pairs ($e^{\pm} e^{\pm}$ ) and two jets, and the results of studies to upgra...

Descripción completa

Detalles Bibliográficos
Autor principal: Tiras, Emrah
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2316151
_version_ 1780958208034078720
author Tiras, Emrah
author_facet Tiras, Emrah
author_sort Tiras, Emrah
collection CERN
description This thesis contains both physics analysis and hardware studies. It consists of two primary sections: the results of a search for heavy Majorana mass neutrinos, using the event signature of same (like) sign charged electron pairs ($e^{\pm} e^{\pm}$ ) and two jets, and the results of studies to upgrade the Hadronic Forward (HF) and Hadronic Endcap (HE) subdetectors in the Compact Muon Solenoid (CMS) detector in response to the high intensity proton-proton collisions generated at the Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN, Conseil Europ\'{e}en pour la Recherche Nucl\'{e}aire). In this search for Majorana mass neutrinos, same sign dielectron ($e^{\pm} e^{\pm}$) + dijet events in the final state have been considered as a signature for neutrino particles. The analyzed data corresponds to an integrated luminosity of 19.7 fb\textsuperscript{-1} of proton-proton collisions at a center of mass energy of $\sqrt{s} = 8 \text{TeV}$, collected using the CMS detector during the 2012 operation at the LHC. Monte Carlo simulations accounting for the theoretical expectations of the Standard Model (SM) and the detector limitations are used to prototype the experiment and to test proposed analysis steps. No excess of events is observed in the data beyond the expected SM background. Upper limits are set on the mixing element squared, $|{V}_{eN}|^{2}$, of the heavy Majorana neutrino with standard model neutrinos, as a function of Majorana neutrino mass for masses in the range of 40-500 $GeV/c^2$. The detector upgrade search comprises three sections of this thesis. The first section describes the test results of 1785 multianode Hamamatsu R7600U-200-M4 photomultiplier tubes (PMT) in numerous parameters such as gain, dark current, and timing characteristics, which provide insights on the expected performance of the upgraded CMS-HF detector. These PMTs replaced the previous single anode R7525 PMTs because the glass windows of previous PMTs are the source of Cherenkov radiation, which causes a background noise in the experiment. The second section reports characterization results of two types of PMTs in a novel operation mode for Secondary Emission (SE) Ionization Calorimetry, which is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The third section presents the test results of novel scintillating materials for CMS experiment in specific and future particle accelerators in general. These materials are Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), high efficiency mirror (HEM) and quartz plates with various organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga). We have investigated them for radiation hardness, light yield, timing characteristics, and scintillation and transmission properties.
id oai-inspirehep.net-1671060
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling oai-inspirehep.net-16710602019-09-30T06:29:59Zhttp://cds.cern.ch/record/2316151engTiras, EmrahSearch for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle collidersParticle Physics - ExperimentThis thesis contains both physics analysis and hardware studies. It consists of two primary sections: the results of a search for heavy Majorana mass neutrinos, using the event signature of same (like) sign charged electron pairs ($e^{\pm} e^{\pm}$ ) and two jets, and the results of studies to upgrade the Hadronic Forward (HF) and Hadronic Endcap (HE) subdetectors in the Compact Muon Solenoid (CMS) detector in response to the high intensity proton-proton collisions generated at the Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN, Conseil Europ\'{e}en pour la Recherche Nucl\'{e}aire). In this search for Majorana mass neutrinos, same sign dielectron ($e^{\pm} e^{\pm}$) + dijet events in the final state have been considered as a signature for neutrino particles. The analyzed data corresponds to an integrated luminosity of 19.7 fb\textsuperscript{-1} of proton-proton collisions at a center of mass energy of $\sqrt{s} = 8 \text{TeV}$, collected using the CMS detector during the 2012 operation at the LHC. Monte Carlo simulations accounting for the theoretical expectations of the Standard Model (SM) and the detector limitations are used to prototype the experiment and to test proposed analysis steps. No excess of events is observed in the data beyond the expected SM background. Upper limits are set on the mixing element squared, $|{V}_{eN}|^{2}$, of the heavy Majorana neutrino with standard model neutrinos, as a function of Majorana neutrino mass for masses in the range of 40-500 $GeV/c^2$. The detector upgrade search comprises three sections of this thesis. The first section describes the test results of 1785 multianode Hamamatsu R7600U-200-M4 photomultiplier tubes (PMT) in numerous parameters such as gain, dark current, and timing characteristics, which provide insights on the expected performance of the upgraded CMS-HF detector. These PMTs replaced the previous single anode R7525 PMTs because the glass windows of previous PMTs are the source of Cherenkov radiation, which causes a background noise in the experiment. The second section reports characterization results of two types of PMTs in a novel operation mode for Secondary Emission (SE) Ionization Calorimetry, which is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The third section presents the test results of novel scintillating materials for CMS experiment in specific and future particle accelerators in general. These materials are Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), high efficiency mirror (HEM) and quartz plates with various organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga). We have investigated them for radiation hardness, light yield, timing characteristics, and scintillation and transmission properties.CERN-THESIS-2017-362oai:inspirehep.net:16710602018-05-04T04:04:02Z
spellingShingle Particle Physics - Experiment
Tiras, Emrah
Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title_full Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title_fullStr Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title_full_unstemmed Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title_short Search for heavy Majorana neutrinos in pp collisions at √s = 8 TeV with the CMS detector & photodetector and calorimeter R&D; for particle colliders
title_sort search for heavy majorana neutrinos in pp collisions at √s = 8 tev with the cms detector & photodetector and calorimeter r&d; for particle colliders
topic Particle Physics - Experiment
url http://cds.cern.ch/record/2316151
work_keys_str_mv AT tirasemrah searchforheavymajorananeutrinosinppcollisionsats8tevwiththecmsdetectorphotodetectorandcalorimeterrdforparticlecolliders