Cargando…

Electron cloud buildup driving spontaneous vertical instabilities of stored beams in the Large Hadron Collider

At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC). Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, d...

Descripción completa

Detalles Bibliográficos
Autores principales: Romano, Annalisa, Boine-Frankenheim, Oliver, Buffat, Xavier, Iadarola, Giovanni, Rumolo, Giovanni
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.21.061002
http://cds.cern.ch/record/2644286
Descripción
Sumario:At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC). Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, despite large chromaticity values and high strength of the Landau-damping octupole magnet. The instability exhibited several features characteristic of those induced by the electron cloud (EC). Indeed, when LHC operates with 25 ns bunch spacing, an EC builds up in a large fraction of the beam chambers, as revealed by several independent indicators. Numerical simulations have been carried out in order to investigate the role of the EC in the observed instabilities. It has been found that the beam intensity decay is unfavorable for the beam stability when LHC operates in a strong EC regime.