Cargando…

Experimental Modal Analysis of Lightweight Structures used in Particle Detectors: Optical non-contact Method

CERN's specialized structures such as particle detectors are built to have high rigidity and low weight, which comes at a cost of their high fragility. Shock and vibration issues are a key element for their successful transport, handling operations around the CERN infra-structure, as well as fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Guinchard, Michael, Angeletti, Massimo, Boyer, Francois, Catinaccio, Andrea, Gargiulo, Corrado, Lacny, Lukasz, Laudi, Elisa, Scislo, Lukasz
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2018-WEPMF079
http://cds.cern.ch/record/2672618
Descripción
Sumario:CERN's specialized structures such as particle detectors are built to have high rigidity and low weight, which comes at a cost of their high fragility. Shock and vibration issues are a key element for their successful transport, handling operations around the CERN infra-structure, as well as for their operation underground. The experimental modal analysis measurement technique is performed to validate the Finite Element Analysis in the case of complex structures (with cables and substructure coupling). In the case of lightweight structures, standard contact measurements based on accelerometers are not possible due to the high mass ratio between the accelerometers and the structure itself. In such a case, the vibration of the structure can be calculated based on the Doppler shift of the laser beam reflected off the vibrating surface. This paper details the functioning and application of an advanced laser-scanning vibrometry system, which utilizes the fore-mentioned non-contact method. The results of the Experimental Modal Analysis of selected lightweight structure using this instrument is also presented and discussed.