Cargando…

Special Collimation System Configuration for the LHC High-Beta Runs

Special LHC high-beta optics is required for the forward physics program of TOTEM and ATLAS-ALFA. In this configuration, the beam is de-squeezed (the \beta-function at the collision point is increased) in order to minimize the divergence for measurements at very small scattering angles. In these low...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia Morales, Hector, Bruce, Roderik, Burkhardt, Helmut, Deile, Mario, Jakobsen, Sune, Mereghetti, Alessio, Redaelli, Stefano
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2018-MOPML012
http://cds.cern.ch/record/2653738
Descripción
Sumario:Special LHC high-beta optics is required for the forward physics program of TOTEM and ATLAS-ALFA. In this configuration, the beam is de-squeezed (the \beta-function at the collision point is increased) in order to minimize the divergence for measurements at very small scattering angles. In these low beam intensity runs, it is important to place the Roman Pots (RPs) as close as possible to the beam, which demands special collimator settings. During Run I, a significant amount of background was observed in the forward detectors due to particles outscattered from the primary collimator. During Run II, a different collimation configuration was used where a tungsten collimator was used as primary collimator instead of the usual one made of carbon. Using this configuration, a significant reduction of the background at the RPs was observed. In this paper we present a description of the new collimator configuration and the results obtained during the high-beta run carried out in 2016.