Cargando…
Sampling the Riemann-Theta Boltzmann Machine
We show that the visible sector probability density function of the Riemann-Theta Boltzmann machine corresponds to a Gaussian mixture model consisting of an infinite number of component multi-variate Gaussians. The weights of the mixture are given by a discrete multi-variate Gaussian over the hidden...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.cpc.2020.107464 http://cds.cern.ch/record/2639022 |
_version_ | 1780960084886552576 |
---|---|
author | Carrazza, Stefano Krefl, Daniel |
author_facet | Carrazza, Stefano Krefl, Daniel |
author_sort | Carrazza, Stefano |
collection | CERN |
description | We show that the visible sector probability density function of the Riemann-Theta Boltzmann machine corresponds to a Gaussian mixture model consisting of an infinite number of component multi-variate Gaussians. The weights of the mixture are given by a discrete multi-variate Gaussian over the hidden state space. This allows us to sample the visible sector density function in a straightforward manner. Furthermore, we show that the visible sector probability density function possesses an affine transform property, similar to the multi-variate Gaussian density. |
id | oai-inspirehep.net-1694236 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | oai-inspirehep.net-16942362023-10-04T06:33:26Zdoi:10.1016/j.cpc.2020.107464http://cds.cern.ch/record/2639022engCarrazza, StefanoKrefl, DanielSampling the Riemann-Theta Boltzmann Machinestat.MLcs.LGComputing and ComputersOtherComputing and ComputersMathematical Physics and MathematicsWe show that the visible sector probability density function of the Riemann-Theta Boltzmann machine corresponds to a Gaussian mixture model consisting of an infinite number of component multi-variate Gaussians. The weights of the mixture are given by a discrete multi-variate Gaussian over the hidden state space. This allows us to sample the visible sector density function in a straightforward manner. Furthermore, we show that the visible sector probability density function possesses an affine transform property, similar to the multi-variate Gaussian density.We show that the visible sector probability density function of the Riemann-Theta Boltzmann machine corresponds to a gaussian mixture model consisting of an infinite number of component multi-variate gaussians. The weights of the mixture are given by a discrete multi-variate gaussian over the hidden state space. This allows us to sample the visible sector density function in a straight-forward manner. Furthermore, we show that the visible sector probability density function possesses an affine transform property, similar to the multi-variate gaussian density.arXiv:1804.07768CERN-TH-2018-085CERN-TH-2018-085oai:inspirehep.net:16942362018-04-20 |
spellingShingle | stat.ML cs.LG Computing and Computers Other Computing and Computers Mathematical Physics and Mathematics Carrazza, Stefano Krefl, Daniel Sampling the Riemann-Theta Boltzmann Machine |
title | Sampling the Riemann-Theta Boltzmann Machine |
title_full | Sampling the Riemann-Theta Boltzmann Machine |
title_fullStr | Sampling the Riemann-Theta Boltzmann Machine |
title_full_unstemmed | Sampling the Riemann-Theta Boltzmann Machine |
title_short | Sampling the Riemann-Theta Boltzmann Machine |
title_sort | sampling the riemann-theta boltzmann machine |
topic | stat.ML cs.LG Computing and Computers Other Computing and Computers Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1016/j.cpc.2020.107464 http://cds.cern.ch/record/2639022 |
work_keys_str_mv | AT carrazzastefano samplingtheriemannthetaboltzmannmachine AT krefldaniel samplingtheriemannthetaboltzmannmachine |