Cargando…
Sampling the Riemann-Theta Boltzmann Machine
We show that the visible sector probability density function of the Riemann-Theta Boltzmann machine corresponds to a Gaussian mixture model consisting of an infinite number of component multi-variate Gaussians. The weights of the mixture are given by a discrete multi-variate Gaussian over the hidden...
Autores principales: | Carrazza, Stefano, Krefl, Daniel |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.cpc.2020.107464 http://cds.cern.ch/record/2639022 |
Ejemplares similares
-
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
Riemann-Theta Boltzmann Machine
por: Krefl, Daniel, et al.
Publicado: (2017) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)