Cargando…
Three dimensional Generative Adversarial Networks for fast simulation
We present the first application of three-dimensional convolutional Generative Adversarial Network to High Energy Physics simulation. We generate three-dimensional images of particles depositing energy in high granularity calorimeters. This is the first time such an approach is taken in HEP where mo...
Autores principales: | Carminati, F, Gheata, A, Khattak, G, Mendez Lorenzo, P, Sharan, S, Vallecorsa, S |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/3/032016 http://cds.cern.ch/record/2665775 |
Ejemplares similares
-
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
por: Hesam, Ahmad, et al.
Publicado: (2019) -
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022)