Cargando…
Machine Learning approach to $\gamma/\pi^0$ separation in the LHCb calorimeter
Reconstruction and identification of particles in calorimeters of modern High Energy Physics experiments is a complicated task. Solutions are usually driven by a priori knowledge about expected properties of reconstructed objects. Such an approach is also used to distinguish single photons in the el...
Autores principales: | Chekalina, Viktoria, Ratnikov, Fedor |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/4/042036 http://cds.cern.ch/record/2664842 |
Ejemplares similares
-
Machine Learning approach to boosting neutral particles identification in the LHCb calorimeter
por: Boldyrev, Alexey, et al.
Publicado: (2019) -
Machine learning photons separation in the LHCb calorimeter
por: Ratnikov, Fedor, et al.
Publicado: (2017) -
Study of gamma/pi0 separation for CMS crystal calorimeter
por: Mohanty, Gagan Bihari, et al.
Publicado: (2000) -
Simulation and optimization of the ATLAS electromagnetic calorimeter: gamma/pi0 separation
por: Froidevaux, D, et al.
Publicado: (1995) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)