Cargando…

Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs

This paper characterizes and models the effects of total ionizing dose (TID) up to 1 Grad(SiO$_2$) on the drain leakage current of nMOSFETs fabricated with a commercial 28-nm bulk CMOS process. Experimental comparisons among individual nMOSFETs of various sizes provide insight into the TID-induced l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chun-Min, Jazaeri, Farzan, Borghello, Giulio, Faccio, Federico, Mattiazzo, Serena, Baschirotto, Andrea, Enz, Christian
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TNS.2018.2878105
http://cds.cern.ch/record/2669513
_version_ 1780962341459853312
author Zhang, Chun-Min
Jazaeri, Farzan
Borghello, Giulio
Faccio, Federico
Mattiazzo, Serena
Baschirotto, Andrea
Enz, Christian
author_facet Zhang, Chun-Min
Jazaeri, Farzan
Borghello, Giulio
Faccio, Federico
Mattiazzo, Serena
Baschirotto, Andrea
Enz, Christian
author_sort Zhang, Chun-Min
collection CERN
description This paper characterizes and models the effects of total ionizing dose (TID) up to 1 Grad(SiO$_2$) on the drain leakage current of nMOSFETs fabricated with a commercial 28-nm bulk CMOS process. Experimental comparisons among individual nMOSFETs of various sizes provide insight into the TID-induced lateral parasitic devices, which contribute the most to the significant increase up to four orders of magnitude in the drain leakage current. We introduce a semiempirical physics-based approach using only three parameters to model the parallel parasitic and total drain leakage current as a function of TID. Taking into account the gate independence of the drain leakage current at high TID levels, we model the lateral parasitic device as a gateless charge-controlled device by using the simplified charge-based Enz-Krummenaker-Vittoz (EKV) MOSFET model. This approach enables us to extract the equivalent density of trapped charges related to the shallow trench isolation oxides. The adopted simplified EKV MOSFET model indicates the weak inversion operation of the lateral parasitic devices.
id oai-inspirehep.net-1727117
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling oai-inspirehep.net-17271172022-08-10T12:30:06Zdoi:10.1109/TNS.2018.2878105http://cds.cern.ch/record/2669513engZhang, Chun-MinJazaeri, FarzanBorghello, GiulioFaccio, FedericoMattiazzo, SerenaBaschirotto, AndreaEnz, ChristianCharacterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETsDetectors and Experimental TechniquesThis paper characterizes and models the effects of total ionizing dose (TID) up to 1 Grad(SiO$_2$) on the drain leakage current of nMOSFETs fabricated with a commercial 28-nm bulk CMOS process. Experimental comparisons among individual nMOSFETs of various sizes provide insight into the TID-induced lateral parasitic devices, which contribute the most to the significant increase up to four orders of magnitude in the drain leakage current. We introduce a semiempirical physics-based approach using only three parameters to model the parallel parasitic and total drain leakage current as a function of TID. Taking into account the gate independence of the drain leakage current at high TID levels, we model the lateral parasitic device as a gateless charge-controlled device by using the simplified charge-based Enz-Krummenaker-Vittoz (EKV) MOSFET model. This approach enables us to extract the equivalent density of trapped charges related to the shallow trench isolation oxides. The adopted simplified EKV MOSFET model indicates the weak inversion operation of the lateral parasitic devices.oai:inspirehep.net:17271172018
spellingShingle Detectors and Experimental Techniques
Zhang, Chun-Min
Jazaeri, Farzan
Borghello, Giulio
Faccio, Federico
Mattiazzo, Serena
Baschirotto, Andrea
Enz, Christian
Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title_full Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title_fullStr Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title_full_unstemmed Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title_short Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
title_sort characterization and modeling of gigarad-tid-induced drain leakage current of 28-nm bulk mosfets
topic Detectors and Experimental Techniques
url https://dx.doi.org/10.1109/TNS.2018.2878105
http://cds.cern.ch/record/2669513
work_keys_str_mv AT zhangchunmin characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT jazaerifarzan characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT borghellogiulio characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT facciofederico characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT mattiazzoserena characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT baschirottoandrea characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets
AT enzchristian characterizationandmodelingofgigaradtidinduceddrainleakagecurrentof28nmbulkmosfets