Cargando…
Optimal Physical Implementation of Radiation Tolerant High-Speed Digital Integrated Circuits in Deep-Submicron Technologies
This paper presents a novel scalable physical implementation method for high-speed Triple Modular Redundant (TMR) digital integrated circuits in radiation-hard designs. The implementation uses a distributed placement strategy compared to a commonly used bulk 3-bank constraining method. TMR netlist i...
Autores principales: | Prinzie, Jeffrey, Appels, Karel, Kulis, Szymon |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3390/electronics8040432 http://cds.cern.ch/record/2692479 |
Ejemplares similares
-
Radiation-Tolerant Digitally Controlled Ring Oscillator in 65-nm CMOS
por: Biereigel, Stefan, et al.
Publicado: (2022) -
A Low Noise Fault Tolerant Radiation Hardened 2.56 Gbps Clock-Data Recovery Circuit With High Speed Feed Forward Correction in 65 nm CMOS
por: Biereigel, Stefan, et al.
Publicado: (2019) -
A Low Noise Fault Tolerant Radiation Hardened 2.56 Gbps Clock-Data Recovery Circuit with High Speed Feed Forward Correction in 65 nm CMOS
por: Prinzie, Jeffrey, et al.
Publicado: (2019) -
Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects
por: Anelli, G, et al.
Publicado: (1999) -
Radiation-Tolerant All-Digital PLL/CDR with Varactorless LC DCO in 65 nm CMOS
por: Biereigel, Stefan, et al.
Publicado: (2021)