Cargando…
Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV
The MAX IV Laboratory is a synchrotron radiation user facility located just outside the city of Lund, Sweden. The facility is made up of two storage rings, at 3 GeV and 1.5 GeV, respectively, and a linear accelerator, serving as a full-energy injector for the rings as well as a driver for the Short-...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/AAC.2018.8659401 http://cds.cern.ch/record/2682994 |
_version_ | 1780963227164737536 |
---|---|
author | Svensson, Jonas Björklund Ekerfelt, Henrik Lundh, Olle Mansten, Erik Andersson, Joel Kotur, Marija Lindau, Filip Thorin, Sara Charles, Tessa K |
author_facet | Svensson, Jonas Björklund Ekerfelt, Henrik Lundh, Olle Mansten, Erik Andersson, Joel Kotur, Marija Lindau, Filip Thorin, Sara Charles, Tessa K |
author_sort | Svensson, Jonas Björklund |
collection | CERN |
description | The MAX IV Laboratory is a synchrotron radiation user facility located just outside the city of Lund, Sweden. The facility is made up of two storage rings, at 3 GeV and 1.5 GeV, respectively, and a linear accelerator, serving as a full-energy injector for the rings as well as a driver for the Short-Pulse Facility (SPF) located downstream of the extraction point to the 3 GeV ring. Recently, as part of the Soft X-ray Laser (SXL) project, a design study towards using the linac as a soft X-ray free-electron laser (FEL) driver was started. Part of the study is the design and commissioning of a diagnostics beamline based on a Transverse Deflecting Structure (TDS). Moreover, the PlasMAX collaboration is working towards using the MAX IV linac also for beam-driven plasma-wakefield (PWFA) experiments. Therefore, the design of the diagnostics beamline is being done to also accommodate an interaction chamber and final focusing, located upstream of the TDS. This proceeding details the current status of the beamline design and shows some preliminary single- and double-bunch current measurements. |
id | oai-inspirehep.net-1741367 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | oai-inspirehep.net-17413672019-09-30T06:29:59Zdoi:10.1109/AAC.2018.8659401http://cds.cern.ch/record/2682994engSvensson, Jonas BjörklundEkerfelt, HenrikLundh, OlleMansten, ErikAndersson, JoelKotur, MarijaLindau, FilipThorin, SaraCharles, Tessa KBeamline Design for Plasma-Wakefield Acceleration Experiments at MAX IVAccelerators and Storage RingsThe MAX IV Laboratory is a synchrotron radiation user facility located just outside the city of Lund, Sweden. The facility is made up of two storage rings, at 3 GeV and 1.5 GeV, respectively, and a linear accelerator, serving as a full-energy injector for the rings as well as a driver for the Short-Pulse Facility (SPF) located downstream of the extraction point to the 3 GeV ring. Recently, as part of the Soft X-ray Laser (SXL) project, a design study towards using the linac as a soft X-ray free-electron laser (FEL) driver was started. Part of the study is the design and commissioning of a diagnostics beamline based on a Transverse Deflecting Structure (TDS). Moreover, the PlasMAX collaboration is working towards using the MAX IV linac also for beam-driven plasma-wakefield (PWFA) experiments. Therefore, the design of the diagnostics beamline is being done to also accommodate an interaction chamber and final focusing, located upstream of the TDS. This proceeding details the current status of the beamline design and shows some preliminary single- and double-bunch current measurements.oai:inspirehep.net:17413672019 |
spellingShingle | Accelerators and Storage Rings Svensson, Jonas Björklund Ekerfelt, Henrik Lundh, Olle Mansten, Erik Andersson, Joel Kotur, Marija Lindau, Filip Thorin, Sara Charles, Tessa K Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title | Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title_full | Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title_fullStr | Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title_full_unstemmed | Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title_short | Beamline Design for Plasma-Wakefield Acceleration Experiments at MAX IV |
title_sort | beamline design for plasma-wakefield acceleration experiments at max iv |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1109/AAC.2018.8659401 http://cds.cern.ch/record/2682994 |
work_keys_str_mv | AT svenssonjonasbjorklund beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT ekerfelthenrik beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT lundholle beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT manstenerik beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT anderssonjoel beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT koturmarija beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT lindaufilip beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT thorinsara beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv AT charlestessak beamlinedesignforplasmawakefieldaccelerationexperimentsatmaxiv |