Cargando…

Beam dynamics simulations with Crab Cavities in the SPS machine

The LHC Upgrade, called High Luminosity LHC, aims to increase the integrated luminosity by a factor of 10. To achieve this, the project relies on a number of key innovative technologies, including the use of superconducting Crab Cavities with ultra-precise phase control for beam rotation. A set of p...

Descripción completa

Detalles Bibliográficos
Autores principales: Alekou, Androula, Appleby, Robert, Bartosik, Hannes, Carlà, Michele, Papaphilippou, Yannis
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2019-MOPGW095
http://cds.cern.ch/record/2696109
Descripción
Sumario:The LHC Upgrade, called High Luminosity LHC, aims to increase the integrated luminosity by a factor of 10. To achieve this, the project relies on a number of key innovative technologies, including the use of superconducting Crab Cavities with ultra-precise phase control for beam rotation. A set of prototype Crab Cavities has been recently installed in the second largest machine of CERN, the Super Proton Synchrotron (SPS), that operated as a test-bed from May to November of 2018. The tight LHC constraints call for axially non-symmetric cavity designs that introduce high order multipole components. Furthermore, the Crab Cavities in the presence of SPS non-linearities can affect the long term stability of the beam. This paper presents how the SPS dynamic aperture is affected for different cavity, machine and beam configurations.