Cargando…
Update on beam transfer line design for the SPS Beam Dump Facility
The SPS Beam Dump Facility (BDF) being studied as part of the Physics Beyond Colliders (PBC) CERN project has recently reached an important milestone with the completion of the comprehensive feasibility study. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to acco...
Autores principales: | , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2019-WEPMP027 http://cds.cern.ch/record/2694067 |
Sumario: | The SPS Beam Dump Facility (BDF) being studied as part of the Physics Beyond Colliders (PBC) CERN project has recently reached an important milestone with the completion of the comprehensive feasibility study. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate experiments such as SHiP (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with $4 \times 10^{13}$ protons per 1 s spill to achieve $4 \times 10^{19}$ protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. This contribution presents the status of the design work of the new transfer line and discusses the challenges identified. Aperture studies and failure scenarios are treated and the results discussed. In particular, interlock systems aiming at protecting critical components against the uncontrolled loss of the high energy proton beam are considered. We also present the latest results and implications of the design of a new laminated Lambertson splitter magnet to provide fast switching between the current North Area experiments and the BDF. |
---|