Cargando…
Unsupervised machine learning for detection of faulty beam position monitors
Unsupervised learning includes anomaly detection techniques that are suitable for the detection of unusual events such as instrumentation faults in particle accelerators. In this work we present the application of a decision trees-based algorithm to faulty BPMs detection at the LHC. This method is f...
Autores principales: | Fol, Elena, Coello de Portugal, Jaime Maria, Tomás, Rogelio |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2019-WEPGW081 http://cds.cern.ch/record/2693725 |
Ejemplares similares
-
Detection of faulty beam position monitors using unsupervised learning
por: Fol, E, et al.
Publicado: (2020) -
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019) -
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019) -
Optics corrections using machine learning in the LHC
por: Fol, Elena, et al.
Publicado: (2019) -
Faulty Connections in the Beam Position Monitors and their effect on the Beam
por: Ellonen, Otto Henrik
Publicado: (2019)