Cargando…
Optics corrections using machine learning in the LHC
Optics corrections in the LHC are based on a response matrix between available correctors and observables. Supervised learning has been applied to optics correction in the LHC demonstrating promising results on simulations and demonstrating the ability to reach acceptably low $\beta$-beating. A comp...
Autores principales: | Fol, Elena, Coello de Portugal, Jaime Maria, Franchetti, Giuliano, Tomás, Rogelio |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2019-THPRB077 http://cds.cern.ch/record/2690544 |
Ejemplares similares
-
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019) -
Machine Learning Techniques for Optics Measurements and Corrections
por: Fol, Elena, et al.
Publicado: (2021) -
Machine Learning Methods for Optics Measurements and Corrections at LHC
por: Fol, Elena, et al.
Publicado: (2018) -
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019) -
Unsupervised machine learning for detection of faulty beam position monitors
por: Fol, Elena, et al.
Publicado: (2019)