Cargando…
A Parallel-Computing Algorithm for High-Energy Physics Particle Tracking and Decoding Using GPU Architectures
Real-time data processing is one of the central processes of particle physics experiments which require large computing resources. The LHCb (Large Hadron Collider beauty) experiment will be upgraded to cope with a particle bunch collision rate of 30 million times per second, producing 10$^{9}$ parti...
Autores principales: | Fernandez Declara, Placido, Campora Perez, Daniel Hugo, Vom Bruch, Dorothea, Neufeld, Niko, Garcia-Blas, Javier, Daniel Garcia, J. |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/ACCESS.2019.2927261 http://cds.cern.ch/record/2689507 |
Ejemplares similares
-
Search by triplet: An efficient local track reconstruction algorithm for parallel architectures
por: Cámpora Pérez, Daniel Hugo, et al.
Publicado: (2022) -
Physics and computing performance of reconstruction algorithms for the GPU High Level Trigger 1 of LHCb
por: Vom Bruch, Dorothea
Publicado: (2019) -
LHCb GPU Acceleration Project
por: Badalov, Alexey, et al.
Publicado: (2015) -
CompassUT : study of a GPU track reconstruction for LHCb upgrades
por: Fernandez Declara, Placido
Publicado: (2019) -
A GPU offloading mechanism for LHCb
por: Badalov, Alexey, et al.
Publicado: (2014)