Cargando…

New approach to LHC optics commissioning for the nonlinear era

In 2017, optics commissioning strategy for low-β* operation of the CERN Large Hadron Collider (LHC) underwent a major revision. This was prompted by a need to extend the scope of beam-based commissioning at high energy, beyond the exclusively linear realm considered previously, and into the nonlinea...

Descripción completa

Detalles Bibliográficos
Autores principales: Maclean, E H, Tomás, R, Carlier, F S, Camillocci, M S, Dilly, J W, Coello de Portugal, J, Fol, E, Fuchsberger, K, Garcia-Tabares Valdivieso, A, Giovannozzi, M, Hofer, M, Malina, L, Persson, T H B, Skowronski, P K, Wegscheider, A
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.22.061004
http://cds.cern.ch/record/2688288
Descripción
Sumario:In 2017, optics commissioning strategy for low-β* operation of the CERN Large Hadron Collider (LHC) underwent a major revision. This was prompted by a need to extend the scope of beam-based commissioning at high energy, beyond the exclusively linear realm considered previously, and into the nonlinear regime. It also stemmed from a recognition that, due to operation with crossing angles in the experimental insertions, the linear and nonlinear optics quality were intrinsically linked through potentially significant feed-down at these locations. Following the usual linear optics commissioning therefore, corrections for (normal and skew) sextupole and (normal and skew) octupole errors in the high-luminosity insertions were implemented. For the first time, the LHC now operates at top energy with beam-based corrections for nonlinear dynamics, and for the effect of the crossing scheme on beta-beating and dispersion. The new commissioning procedure has improved the control of various linear and nonlinear characteristics of the LHC, yielding clear operational benefits.