Cargando…
3D convolutional GAN for fast simulation
Machine Learning techniques have been used in different applications by the HEP community: in this talk, we discuss the case of detector simulation. The need for simulated events, expected in the future for LHC experiments and their High Luminosity upgrades, is increasing dramatically and requires n...
Autores principales: | Vallecorsa, Sofia, Carminati, Federico, Khattak, Gulrukh |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921402010 http://cds.cern.ch/record/2701779 |
Ejemplares similares
-
Fast simulation of electromagnetic particle showers in high granularity calorimeters
por: da Rocha, Ricardo Brito, et al.
Publicado: (2020) -
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
por: Hesam, Ahmad, et al.
Publicado: (2019) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018)