Cargando…
Binary classifier metrics for optimizing HEP event selection
I discuss the choice of evaluation metrics for binary classifiers in High Energy Physics (HEP) event selection and I point out that the Area Under the ROC Curve (AUC) is of limited relevance in this context, after discussing its use in other domains. I propose new metrics based on Fisher information...
Autor principal: | Valassi, Andrea |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406004 http://cds.cern.ch/record/2699582 |
Ejemplares similares
-
Fisher information metrics for binary classifier evaluation and training
por: Valassi, Andrea
Publicado: (2018) -
EDM4hep and podio - The event data model of the Key4hep project and its implementation
por: Gaede, Frank, et al.
Publicado: (2021) -
JETNET: ML-based predictor for Event Classifier of JETs using 2015 CMS Open Data
por: Wiranata, Fandi Azam
Publicado: (2022) -
HEPCon - A cross-platform mobile application for HEP events
por: Vassilev, Martin, et al.
Publicado: (2019) -
CompHEP 44 - Automatic computations from lagrangians to events
por: Boos, E, et al.
Publicado: (2004)