Cargando…
Large-scale distributed training applied to generative adversarial networks for calorimeter simulation
In recent years, several studies have demonstrated the benefit of using deep learning to solve typical tasks related to high energy physics data taking and analysis. In particular, generative adversarial networks are a good candidate to supplement the simulation of the detector response in a collide...
Autores principales: | Vlimant, Jean-Roch, Pantaleo, Felice, Pierini, Maurizio, Loncar, Vladimir, Vallecorsa, Sofia, Anderson, Dustin, Nguyen, Thong, Zlokapa, Alexander |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406025 http://cds.cern.ch/record/2699586 |
Ejemplares similares
-
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
por: Hesam, Ahmad, et al.
Publicado: (2019) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018)