Cargando…
RDataFrame: Easy parallel ROOT analysis at 100 threads
The Physics programmes of LHC Run III and HL-LHC challenge the HEP community. The volume of data to be handled is unprecedented at every step of the data processing chain: analysis is no exception. Physicists must be provided with first-class analysis tools which are easy to use, exploit bleeding ed...
Autores principales: | Piparo, Danilo, Canal, Philippe, Guiraud, Enrico, Valls Pla, Xavier, Ganis, Gerardo, Amadio, Guilherme, Naumann, Axel, Tejedor, Enric |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406029 http://cds.cern.ch/record/2699587 |
Ejemplares similares
-
RDataFrame enhancements for HEP analyses
por: Guiraud, E, et al.
Publicado: (2023) -
Distributed data analysis with ROOT RDataFrame
por: Padulano, Vincenzo Eduardo, et al.
Publicado: (2020) -
Leveraging HPC resources with distributed RDataFrame
por: Padulano, V E, et al.
Publicado: (2023) -
Fine-grained data caching approaches to speedup a distributed RDataFrame analysis
por: Padulano, Vincenzo Eduardo, et al.
Publicado: (2021) -
Parallelization and optimization of a High Energy Physics analysis with ROOT’s RDataFrame and Spark
por: Cervantes Villanueva, Javier
Publicado: (2018)