Cargando…
The TrackML high-energy physics tracking challenge on Kaggle
The High-Luminosity LHC (HL-LHC) is expected to reach unprecedented collision intensities, which in turn will greatly increase the complexity of tracking within the event reconstruction. To reach out to computer science specialists, a tracking machine learning challenge (TrackML) was set up on Kaggl...
Autores principales: | Kiehn, Moritz, Amrouche, Sabrina, Calafiura, Paolo, Estrade, Victor, Farrell, Steven, Germain, Cécile, Gligorov, Vava, Golling, Tobias, Gray, Heather, Guyon, Isabelle, Hushchyn, Mikhail, Innocente, Vincenzo, Moyse, Edward, Rousseau, David, Salzburger, Andreas, Ustyuzhanin, Andrey, Vlimant, Jean-Roch, Yilnaz, Yetkin |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406037 http://cds.cern.ch/record/2699475 |
Ejemplares similares
-
TrackML : a tracking Machine Learning challenge
por: Golling, Tobias, et al.
Publicado: (2019) -
TrackML: A High Energy Physics Particle Tracking Challenge
por: Calafiura, Polo, et al.
Publicado: (2018) -
The Tracking Machine Learning challenge : Throughput phase
por: Amrouche, Sabrina, et al.
Publicado: (2021) -
TrackML : The High Energy Physics Tracking Challenge
por: Rousseau, David
Publicado: (2018) -
Kinematic Analysis of TrackML Challenge Submissions
por: Ramey, Emily Ashlynne
Publicado: (2018)