Cargando…
The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets
Part of the Future Circular Collider (FCC-hh) study is dedicated to the development of the 16 Tesla ${\rm Nb_3Sn}$superconducting dipole magnets. The design of the magnets was enabled by a cooperative effort of national research institutes, universities, and CERN. These actors tackled the problem fr...
Autores principales: | , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TASC.2019.2930705 http://cds.cern.ch/record/2701593 |
_version_ | 1780964605494820864 |
---|---|
author | Prioli, Marco Salmi, Tiina Auchmann, Bernhard Bortot, Lorenzo Maciejewski, Michal Verweij, Arjan Caiffi, Barbara Farinon, Stefania Lorin, Clement Segreti, Michel Fernandez, Alejandro M Munilla, Javier |
author_facet | Prioli, Marco Salmi, Tiina Auchmann, Bernhard Bortot, Lorenzo Maciejewski, Michal Verweij, Arjan Caiffi, Barbara Farinon, Stefania Lorin, Clement Segreti, Michel Fernandez, Alejandro M Munilla, Javier |
author_sort | Prioli, Marco |
collection | CERN |
description | Part of the Future Circular Collider (FCC-hh) study is dedicated to the development of the 16 Tesla ${\rm Nb_3Sn}$superconducting dipole magnets. The design of the magnets was enabled by a cooperative effort of national research institutes, universities, and CERN. These actors tackled the problem from different sides, namely, the electromagnetic design, the mechanical design, the design of the quench protection systems, and the circuit design. The article deals with the design of the quench protection systems and provides solid motivations for the selection of the coupling-loss-induced quench (CLIQ) device as the baseline protection system for the FCC-hh main dipole magnets. The article shows that the design domains mentioned above are tightly interconnected and, therefore, the simulation of a quench event involves a complex multiphysics problem. The STEAM cosimulation framework, recently developed at CERN, is applied to address the complexity. The STEAM-SIGMA models are employed to simulate the CLIQ quench protection system applied to the FCC-hh dipole magnets. Dedicated CLIQ configurations are identified to protect the magnets in case of a quench. In addition, the possible implications of the CLIQ protection system on the mechanical design of the magnets are discussed. To this end, the article employs the co-simulation of different software platforms to calculate the mechanical stress during a quench. The results show that CLIQ does not produce additional stress. |
id | oai-inspirehep.net-1764485 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | oai-inspirehep.net-17644852019-11-27T23:49:31Zdoi:10.1109/TASC.2019.2930705http://cds.cern.ch/record/2701593engPrioli, MarcoSalmi, TiinaAuchmann, BernhardBortot, LorenzoMaciejewski, MichalVerweij, ArjanCaiffi, BarbaraFarinon, StefaniaLorin, ClementSegreti, MichelFernandez, Alejandro MMunilla, JavierThe CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole MagnetsAccelerators and Storage RingsPart of the Future Circular Collider (FCC-hh) study is dedicated to the development of the 16 Tesla ${\rm Nb_3Sn}$superconducting dipole magnets. The design of the magnets was enabled by a cooperative effort of national research institutes, universities, and CERN. These actors tackled the problem from different sides, namely, the electromagnetic design, the mechanical design, the design of the quench protection systems, and the circuit design. The article deals with the design of the quench protection systems and provides solid motivations for the selection of the coupling-loss-induced quench (CLIQ) device as the baseline protection system for the FCC-hh main dipole magnets. The article shows that the design domains mentioned above are tightly interconnected and, therefore, the simulation of a quench event involves a complex multiphysics problem. The STEAM cosimulation framework, recently developed at CERN, is applied to address the complexity. The STEAM-SIGMA models are employed to simulate the CLIQ quench protection system applied to the FCC-hh dipole magnets. Dedicated CLIQ configurations are identified to protect the magnets in case of a quench. In addition, the possible implications of the CLIQ protection system on the mechanical design of the magnets are discussed. To this end, the article employs the co-simulation of different software platforms to calculate the mechanical stress during a quench. The results show that CLIQ does not produce additional stress.oai:inspirehep.net:17644852019 |
spellingShingle | Accelerators and Storage Rings Prioli, Marco Salmi, Tiina Auchmann, Bernhard Bortot, Lorenzo Maciejewski, Michal Verweij, Arjan Caiffi, Barbara Farinon, Stefania Lorin, Clement Segreti, Michel Fernandez, Alejandro M Munilla, Javier The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title | The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title_full | The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title_fullStr | The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title_full_unstemmed | The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title_short | The CLIQ Quench Protection System Applied to the 16 T FCC-hh Dipole Magnets |
title_sort | cliq quench protection system applied to the 16 t fcc-hh dipole magnets |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1109/TASC.2019.2930705 http://cds.cern.ch/record/2701593 |
work_keys_str_mv | AT priolimarco thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT salmitiina thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT auchmannbernhard thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT bortotlorenzo thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT maciejewskimichal thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT verweijarjan thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT caiffibarbara thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT farinonstefania thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT lorinclement thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT segretimichel thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT fernandezalejandrom thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT munillajavier thecliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT priolimarco cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT salmitiina cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT auchmannbernhard cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT bortotlorenzo cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT maciejewskimichal cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT verweijarjan cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT caiffibarbara cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT farinonstefania cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT lorinclement cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT segretimichel cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT fernandezalejandrom cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets AT munillajavier cliqquenchprotectionsystemappliedtothe16tfcchhdipolemagnets |