Cargando…

Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System

The Future Circular Collider (FCC-hh) project is a conceptual study whose goal is to design the successor of the Large Hadron Collider, increasing the collision energy from 14 to 100 TeV. The energy stored in the 16-T superconducting dipole magnets and the length of the sectors composing the 100-km...

Descripción completa

Detalles Bibliográficos
Autores principales: Prioli, Marco, Auchmann, Bernhard, Bortot, Lorenzo, Maciejewski, Michał, Salmi, Tiina, Verweij, Arjan
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TASC.2019.2931172
http://cds.cern.ch/record/2701594
_version_ 1780964605710827520
author Prioli, Marco
Auchmann, Bernhard
Bortot, Lorenzo
Maciejewski, Michał
Salmi, Tiina
Verweij, Arjan
author_facet Prioli, Marco
Auchmann, Bernhard
Bortot, Lorenzo
Maciejewski, Michał
Salmi, Tiina
Verweij, Arjan
author_sort Prioli, Marco
collection CERN
description The Future Circular Collider (FCC-hh) project is a conceptual study whose goal is to design the successor of the Large Hadron Collider, increasing the collision energy from 14 to 100 TeV. The energy stored in the 16-T superconducting dipole magnets and the length of the sectors composing the 100-km FCC tunnel are considerably larger than those in present accelerators. This means that the energy stored in the FCC-hh dipole circuit is likely to be much higher than that in existing superconducting circuits. In the case of magnet quenches or faults, the circuit needs to be protected, i.e., its energy needs to be rapidly dissipated without inducing excessive voltages in the magnet chain. This article proposes a conceptual design for the FCC-hh dipole circuit, which satisfies the constraint of the maximum allowable voltage-to-ground and fulfills additional requirements related to the FCC-hh operation and tunnel layout. A compromise among the considered requirements leads to a relatively simple circuit layout and a large number of circuits for the entire machine. The behavior of the proposed circuit during the critical fast power abort phase is simulated through a numerical model, which covers the electrical circuit domain and the electrothermal magnet domain. Each FCC-hh dipole magnet is protected by means of the coupling-loss-induced quench (CLIQ) protection system, which also acts at the circuit level. The simulations predict severe voltage oscillations in the FCC-hh dipole circuits that may pose a problem for the quench detection system. The simulations also show that the severity of the oscillations is not due to the presence of CLIQ. This protection system can be integrated into the proposed circuit layout and represents an effective protection system for the entire string of FCC-hh dipole magnets.
id oai-inspirehep.net-1764486
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling oai-inspirehep.net-17644862019-11-27T23:49:31Zdoi:10.1109/TASC.2019.2931172http://cds.cern.ch/record/2701594engPrioli, MarcoAuchmann, BernhardBortot, LorenzoMaciejewski, MichałSalmi, TiinaVerweij, ArjanConceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection SystemAccelerators and Storage RingsThe Future Circular Collider (FCC-hh) project is a conceptual study whose goal is to design the successor of the Large Hadron Collider, increasing the collision energy from 14 to 100 TeV. The energy stored in the 16-T superconducting dipole magnets and the length of the sectors composing the 100-km FCC tunnel are considerably larger than those in present accelerators. This means that the energy stored in the FCC-hh dipole circuit is likely to be much higher than that in existing superconducting circuits. In the case of magnet quenches or faults, the circuit needs to be protected, i.e., its energy needs to be rapidly dissipated without inducing excessive voltages in the magnet chain. This article proposes a conceptual design for the FCC-hh dipole circuit, which satisfies the constraint of the maximum allowable voltage-to-ground and fulfills additional requirements related to the FCC-hh operation and tunnel layout. A compromise among the considered requirements leads to a relatively simple circuit layout and a large number of circuits for the entire machine. The behavior of the proposed circuit during the critical fast power abort phase is simulated through a numerical model, which covers the electrical circuit domain and the electrothermal magnet domain. Each FCC-hh dipole magnet is protected by means of the coupling-loss-induced quench (CLIQ) protection system, which also acts at the circuit level. The simulations predict severe voltage oscillations in the FCC-hh dipole circuits that may pose a problem for the quench detection system. The simulations also show that the severity of the oscillations is not due to the presence of CLIQ. This protection system can be integrated into the proposed circuit layout and represents an effective protection system for the entire string of FCC-hh dipole magnets.oai:inspirehep.net:17644862019
spellingShingle Accelerators and Storage Rings
Prioli, Marco
Auchmann, Bernhard
Bortot, Lorenzo
Maciejewski, Michał
Salmi, Tiina
Verweij, Arjan
Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title_full Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title_fullStr Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title_full_unstemmed Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title_short Conceptual Design of the FCC-hh Dipole Circuits With Integrated CLIQ Protection System
title_sort conceptual design of the fcc-hh dipole circuits with integrated cliq protection system
topic Accelerators and Storage Rings
url https://dx.doi.org/10.1109/TASC.2019.2931172
http://cds.cern.ch/record/2701594
work_keys_str_mv AT priolimarco conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem
AT auchmannbernhard conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem
AT bortotlorenzo conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem
AT maciejewskimichał conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem
AT salmitiina conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem
AT verweijarjan conceptualdesignofthefcchhdipolecircuitswithintegratedcliqprotectionsystem