Cargando…
Using Machine Learning techniques for Data Quality Monitoring in CMS and ALICE experiments
Data Quality Assurance plays an important role in all high-energy physics experiments. Currently used methods rely heavily on manual labour and human expert judgements. Hence, multiple attempts are being undertaken to develop automatic solutions especially based on machine learning techniques as the...
Autor principal: | Deja, Kamil Rafal |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.350.0236 http://cds.cern.ch/record/2707754 |
Ejemplares similares
-
Using Machine Learning for Particle Identification in ALICE
por: Graczykowski, Łukasz Kamil, et al.
Publicado: (2022) -
Particle identification with machine learning in ALICE Run 3
por: Karwowska, Maja, et al.
Publicado: (2023) -
What can we learn from femtoscopic and angular correlations of identified particles in ALICE?
por: Graczykowski, Łukasz Kamil
Publicado: (2018) -
Automatic measurement of track reconstruction efficiency for data quality monitoring in the CMS experiment
por: Tee, Chin Zhe
Publicado: (2019) -
What can we Learn With Light Neutral Probes in the ALICE Experiment?
por: Matyja, Adam
Publicado: (2021)