Cargando…
Fault detection on fluid machinery using Hidden Markov Models
A fault detection method exploiting Hidden Markov Models (HMMs) is proposed for fluid machinery without adequate a priori information about faulty conditions. The method is trained only on data acquired during normal machine operation. For anomaly detection, typical quantities measured in monitoring...
Autores principales: | Arpaia, P, Cesaro, U, Chadli, M, Coppier, H, De Vito, L, Esposito, A, Gargiulo, F, Pezzetti, M |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Acceso en línea: | https://dx.doi.org/10.1016/j.measurement.2019.107126 http://cds.cern.ch/record/2704706 |
Ejemplares similares
-
Sensor array calibration by a single reference in presence of measurand non-linear gradient
por: Arpaia, P, et al.
Publicado: (2018) -
Process Identification through Test on Cryogenic System
por: Pezzetti, M, et al.
Publicado: (2008) -
Innovative Methodology Dedicated to the CERN LHC Cryogenic Valves Based on Modern Algorithm for Fault Detection and Predictive Diagnostics
por: Pezzetti, Marco, et al.
Publicado: (2022) -
Early-stage fault isolation based on frequency response fitted by small-size samples for cryogenic cold compressors with active magnetic bearings
por: Arpaia, Pasquale, et al.
Publicado: (2016) -
Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model
por: Shin, Sung-Hwan, et al.
Publicado: (2018)