Cargando…

Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware

The ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simula...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Jay, Guan, Wen, Sun, Shaojun, Wang, Alex Zeng, Wu, Sau Lan, Zhou, Chen, Livny, Miron, Carminati, Federico, Meglio, Alberto Di
Lenguaje:eng
Publicado: SISSA 2019
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.367.0049
http://cds.cern.ch/record/2712232
_version_ 1780965289398108160
author Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex Zeng
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Meglio, Alberto Di
author_facet Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex Zeng
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Meglio, Alberto Di
author_sort Chan, Jay
collection CERN
description The ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simulators and Quantum Computer Hardware, we have successfully employed the Quantum Support Vector Machine Method (QSVM) for a ttH (H to two photons), Higgs coupling to top quarks analysis at LHC.
id oai-inspirehep.net-1774966
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher SISSA
record_format invenio
spelling oai-inspirehep.net-17749662022-08-17T12:59:29Zdoi:10.22323/1.367.0049http://cds.cern.ch/record/2712232engChan, JayGuan, WenSun, ShaojunWang, Alex ZengWu, Sau LanZhou, ChenLivny, MironCarminati, FedericoMeglio, Alberto DiApplication of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer HardwareParticle Physics - ExperimentComputing and ComputersThe ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simulators and Quantum Computer Hardware, we have successfully employed the Quantum Support Vector Machine Method (QSVM) for a ttH (H to two photons), Higgs coupling to top quarks analysis at LHC.SISSAoai:inspirehep.net:17749662019
spellingShingle Particle Physics - Experiment
Computing and Computers
Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex Zeng
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Meglio, Alberto Di
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_full Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_fullStr Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_full_unstemmed Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_short Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_sort application of quantum machine learning to high energy physics analysis at lhc using ibm quantum computer simulators and ibm quantum computer hardware
topic Particle Physics - Experiment
Computing and Computers
url https://dx.doi.org/10.22323/1.367.0049
http://cds.cern.ch/record/2712232
work_keys_str_mv AT chanjay applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT guanwen applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT sunshaojun applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT wangalexzeng applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT wusaulan applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT zhouchen applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT livnymiron applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT carminatifederico applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT meglioalbertodi applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware