Cargando…
A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
A Generative-Adversarial Network (GAN) based on convolutional neural networks is used to simulate the production of pairs of jets at the LHC. The GAN is trained on events generated using MadGraph5, Pythia8, and Delphes3 fast detector simulation. We demonstrate that a number of kinematic distribution...
Autores principales: | Di Sipio, Riccardo, Faucci Giannelli, Michele, Ketabchi Haghighat, Sana, Palazzo, Serena |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.367.0050 http://cds.cern.ch/record/2728092 |
Ejemplares similares
-
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
ATLAS LAr Calorimeter Commissioning for LHC Run-3
por: Ketabchi Haghighat, Sana
Publicado: (2020) -
Inclusive and diffractive dijet photoproduction in UPCs at the LHC in NLO QCD
por: Guzey, Vadim, et al.
Publicado: (2019) -
Searches for new physics using dijet events at the LHC
por: Cardaci, M.
Publicado: (2008) -
Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description
por: Arjona Martínez, Jesús, et al.
Publicado: (2019)