Cargando…

A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC

A Generative-Adversarial Network (GAN) based on convolutional neural networks is used to simulate the production of pairs of jets at the LHC. The GAN is trained on events generated using MadGraph5, Pythia8, and Delphes3 fast detector simulation. We demonstrate that a number of kinematic distribution...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Sipio, Riccardo, Faucci Giannelli, Michele, Ketabchi Haghighat, Sana, Palazzo, Serena
Lenguaje:eng
Publicado: SISSA 2019
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.367.0050
http://cds.cern.ch/record/2728092

Ejemplares similares