Cargando…

Design of Crab Cavity Cryomodule for HL-LHC

Crab cavities are a key element to achieve the HL-LHC performance goals. There are two types of cavities Double Quarter Wave (DQW) for vertical crabbing, and Radiofrequency Dipole (RFD) for horizontal crabbing. Cavities are hosted in a cryomodule to provide optimal conditions for their operation at...

Descripción completa

Detalles Bibliográficos
Autores principales: Capelli, Teddy, Artoos, Kurt, Boucherie, Antoine, Brodzinski, Krzysztof, Calaga, Rama, Calvo, Sebastien, Cano-Pleite, Eduardo, Capatina, Ofelia, Carra, Federico, Dassa, Luca, Eriksson, Frida, Garlasché, Marco, Krawczyk, Artur, Leuxe, Raphael, Minginette, Pierre, Montesinos, Eric, Prochal, Boguslaw, Sosin, Mateusz, Therasse, Mathieu, Jones, Thomas, Templeton, Niklas, Pattalwar, Shrikant
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-SRF2019-MOP099
http://cds.cern.ch/record/2712614
Descripción
Sumario:Crab cavities are a key element to achieve the HL-LHC performance goals. There are two types of cavities Double Quarter Wave (DQW) for vertical crabbing, and Radiofrequency Dipole (RFD) for horizontal crabbing. Cavities are hosted in a cryomodule to provide optimal conditions for their operation at 2K while minimizing the external thermal loads and stray magnetic fields. One crab cryomodule contains more than thirteen thousand components and the assembly procedure for the first DQW prototype was carefully planned and executed. It was installed in the SPS accelerator at CERN in 2018 and successfully tested with proton beams. A review has thus been performed right after completion of the assembly in order to gather all the experience acquired and improve accordingly the design of the next generation of crab cryomodules. A second cryomodule with two RFD cavities is currently under production. This paper presents the lessons learnt from the first assembly and their implementation to the design of the future crab cryomodules.