Cargando…
Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study
The hadron collider proposed by the Future Circular Collider (FCC) study would require high-field superconducting magnets capable of producing a dipole field of around 16 T in a 50 mm aperture. To develop a suitable conductor for these magnets, CERN is coordinating a conductor development programme...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
IOP
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1559/1/012026 http://cds.cern.ch/record/2725894 |
_version_ | 1780966149419171840 |
---|---|
author | Hopkins, Simon C Baskys, Algirdas Bordini, Bernardo Fleiter, Jerome Ballarino, Amalia |
author_facet | Hopkins, Simon C Baskys, Algirdas Bordini, Bernardo Fleiter, Jerome Ballarino, Amalia |
author_sort | Hopkins, Simon C |
collection | CERN |
description | The hadron collider proposed by the Future Circular Collider (FCC) study would require high-field superconducting magnets capable of producing a dipole field of around 16 T in a 50 mm aperture. To develop a suitable conductor for these magnets, CERN is coordinating a conductor development programme aiming to obtain Nb$_3$Sn wire with a non-copper critical current density of 1500 A mm$^{-2}$ at 16 T and 4.2 K, in lengths suitable for manufacturing 14 m long magnets, and able to withstand cabling without significant degradation. Here we report the superconducting characterisation and quantitative microscopy of recently-developed Nb$_3$Sn wires with novel layouts and compositions, and evaluate their suitability for Rutherford cabling based on cabling trials and rolling studies. An analysis of the influence of wire layout, materials and mechanical characteristics on cabling performance is presented, to support recommendations for future wire designs. |
id | oai-inspirehep.net-1803458 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
publisher | IOP |
record_format | invenio |
spelling | oai-inspirehep.net-18034582021-02-09T10:04:50Zdoi:10.1088/1742-6596/1559/1/012026http://cds.cern.ch/record/2725894engHopkins, Simon CBaskys, AlgirdasBordini, BernardoFleiter, JeromeBallarino, AmaliaDesign, Performance and Cabling Analysis of Nb3Sn Wires for the FCC StudyAccelerators and Storage RingsThe hadron collider proposed by the Future Circular Collider (FCC) study would require high-field superconducting magnets capable of producing a dipole field of around 16 T in a 50 mm aperture. To develop a suitable conductor for these magnets, CERN is coordinating a conductor development programme aiming to obtain Nb$_3$Sn wire with a non-copper critical current density of 1500 A mm$^{-2}$ at 16 T and 4.2 K, in lengths suitable for manufacturing 14 m long magnets, and able to withstand cabling without significant degradation. Here we report the superconducting characterisation and quantitative microscopy of recently-developed Nb$_3$Sn wires with novel layouts and compositions, and evaluate their suitability for Rutherford cabling based on cabling trials and rolling studies. An analysis of the influence of wire layout, materials and mechanical characteristics on cabling performance is presented, to support recommendations for future wire designs.IOPoai:inspirehep.net:18034582020 |
spellingShingle | Accelerators and Storage Rings Hopkins, Simon C Baskys, Algirdas Bordini, Bernardo Fleiter, Jerome Ballarino, Amalia Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title | Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title_full | Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title_fullStr | Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title_full_unstemmed | Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title_short | Design, Performance and Cabling Analysis of Nb3Sn Wires for the FCC Study |
title_sort | design, performance and cabling analysis of nb3sn wires for the fcc study |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1088/1742-6596/1559/1/012026 http://cds.cern.ch/record/2725894 |
work_keys_str_mv | AT hopkinssimonc designperformanceandcablinganalysisofnb3snwiresforthefccstudy AT baskysalgirdas designperformanceandcablinganalysisofnb3snwiresforthefccstudy AT bordinibernardo designperformanceandcablinganalysisofnb3snwiresforthefccstudy AT fleiterjerome designperformanceandcablinganalysisofnb3snwiresforthefccstudy AT ballarinoamalia designperformanceandcablinganalysisofnb3snwiresforthefccstudy |