Cargando…
Overall quality optimization for DQM stage in High Energy Physics experiments
Data Acquisition (DAQ) and Data Quality Monitoring (DQM) are key parts in the HEP data chain, where the data are processed and analyzed to obtain accurate monitoring quality indicators. Such stages are complex, including an intense processing work-flow and requiring a high degree of interoperability...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
IOP
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1525/1/012063 http://cds.cern.ch/record/2725601 |
_version_ | 1780966038253338624 |
---|---|
author | Benekos, N Parra-Royon, M Benitez, J M |
author_facet | Benekos, N Parra-Royon, M Benitez, J M |
author_sort | Benekos, N |
collection | CERN |
description | Data Acquisition (DAQ) and Data Quality Monitoring (DQM) are key parts in the HEP data chain, where the data are processed and analyzed to obtain accurate monitoring quality indicators. Such stages are complex, including an intense processing work-flow and requiring a high degree of interoperability between software and hardware facilities. Data recorded by DAQ sensors and devices are sampled to perform live (and offline) DQM of the status of the detector during data collection providing to the system and scientists the ability to identify problems with extremely low latency, minimizing the amount of data that would otherwise be unsuitable for physical analysis. DQM stage performs a large set of operations (Fast Fourier Transform (FFT), clustering, classification algorithms, Region of Interest, particles tracking, etc.) involving the use of computing resources and time, depending on the number of events of the experiment, sampling data, complexity of the tasks or the quality performance. The objective of our work is to show a proposal with aim of developing a general optimization of the DQM stage considering all these elements. Techniques based on computational intelligence like EA can help improve the performance and therefore achieve an optimization of task scheduling in DQM. |
id | oai-inspirehep.net-1806231 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
publisher | IOP |
record_format | invenio |
spelling | oai-inspirehep.net-18062312021-02-09T10:05:20Zdoi:10.1088/1742-6596/1525/1/012063http://cds.cern.ch/record/2725601engBenekos, NParra-Royon, MBenitez, J MOverall quality optimization for DQM stage in High Energy Physics experimentsComputing and ComputersData Acquisition (DAQ) and Data Quality Monitoring (DQM) are key parts in the HEP data chain, where the data are processed and analyzed to obtain accurate monitoring quality indicators. Such stages are complex, including an intense processing work-flow and requiring a high degree of interoperability between software and hardware facilities. Data recorded by DAQ sensors and devices are sampled to perform live (and offline) DQM of the status of the detector during data collection providing to the system and scientists the ability to identify problems with extremely low latency, minimizing the amount of data that would otherwise be unsuitable for physical analysis. DQM stage performs a large set of operations (Fast Fourier Transform (FFT), clustering, classification algorithms, Region of Interest, particles tracking, etc.) involving the use of computing resources and time, depending on the number of events of the experiment, sampling data, complexity of the tasks or the quality performance. The objective of our work is to show a proposal with aim of developing a general optimization of the DQM stage considering all these elements. Techniques based on computational intelligence like EA can help improve the performance and therefore achieve an optimization of task scheduling in DQM.IOPoai:inspirehep.net:18062312020 |
spellingShingle | Computing and Computers Benekos, N Parra-Royon, M Benitez, J M Overall quality optimization for DQM stage in High Energy Physics experiments |
title | Overall quality optimization for DQM stage in High Energy Physics experiments |
title_full | Overall quality optimization for DQM stage in High Energy Physics experiments |
title_fullStr | Overall quality optimization for DQM stage in High Energy Physics experiments |
title_full_unstemmed | Overall quality optimization for DQM stage in High Energy Physics experiments |
title_short | Overall quality optimization for DQM stage in High Energy Physics experiments |
title_sort | overall quality optimization for dqm stage in high energy physics experiments |
topic | Computing and Computers |
url | https://dx.doi.org/10.1088/1742-6596/1525/1/012063 http://cds.cern.ch/record/2725601 |
work_keys_str_mv | AT benekosn overallqualityoptimizationfordqmstageinhighenergyphysicsexperiments AT parraroyonm overallqualityoptimizationfordqmstageinhighenergyphysicsexperiments AT benitezjm overallqualityoptimizationfordqmstageinhighenergyphysicsexperiments |