Cargando…

Generative Adversarial Networks for fast simulation

Deep Learning techniques are being studied for different applications by the HEP community: in this talk, we discuss the case of detector simulation. The need for simulated events, expected in the future for LHC experiments and their High Luminosity upgrades, is increasing dramatically and requires...

Descripción completa

Detalles Bibliográficos
Autores principales: Carminati, Federico, Khattak, Gulrukh, Loncar, Vladimir, Nguyen, Thong Q, Pierini, Maurizio, Brito Da Rocha, Ricardo, Samaras-Tsakiris, Konstantinos, Vallecorsa, Sofia, Vlimant, Jean-Roch
Lenguaje:eng
Publicado: IOP 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/1525/1/012064
http://cds.cern.ch/record/2725602
_version_ 1780966038471442432
author Carminati, Federico
Khattak, Gulrukh
Loncar, Vladimir
Nguyen, Thong Q
Pierini, Maurizio
Brito Da Rocha, Ricardo
Samaras-Tsakiris, Konstantinos
Vallecorsa, Sofia
Vlimant, Jean-Roch
author_facet Carminati, Federico
Khattak, Gulrukh
Loncar, Vladimir
Nguyen, Thong Q
Pierini, Maurizio
Brito Da Rocha, Ricardo
Samaras-Tsakiris, Konstantinos
Vallecorsa, Sofia
Vlimant, Jean-Roch
author_sort Carminati, Federico
collection CERN
description Deep Learning techniques are being studied for different applications by the HEP community: in this talk, we discuss the case of detector simulation. The need for simulated events, expected in the future for LHC experiments and their High Luminosity upgrades, is increasing dramatically and requires new fast simulation solutions. Here we present updated results on the development of 3DGAN, one of the first examples using three-dimensional convolutional Generative Adversarial Networks to simulate high granularity electromagnetic calorimeters. In particular, we report on two main aspects: results on the simulation of a more general, realistic physics use case and on data parallel strategies to distribute the training process across multiple nodes on public cloud resources.
id oai-inspirehep.net-1806232
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
publisher IOP
record_format invenio
spelling oai-inspirehep.net-18062322021-02-09T10:07:26Zdoi:10.1088/1742-6596/1525/1/012064http://cds.cern.ch/record/2725602engCarminati, FedericoKhattak, GulrukhLoncar, VladimirNguyen, Thong QPierini, MaurizioBrito Da Rocha, RicardoSamaras-Tsakiris, KonstantinosVallecorsa, SofiaVlimant, Jean-RochGenerative Adversarial Networks for fast simulationComputing and ComputersDeep Learning techniques are being studied for different applications by the HEP community: in this talk, we discuss the case of detector simulation. The need for simulated events, expected in the future for LHC experiments and their High Luminosity upgrades, is increasing dramatically and requires new fast simulation solutions. Here we present updated results on the development of 3DGAN, one of the first examples using three-dimensional convolutional Generative Adversarial Networks to simulate high granularity electromagnetic calorimeters. In particular, we report on two main aspects: results on the simulation of a more general, realistic physics use case and on data parallel strategies to distribute the training process across multiple nodes on public cloud resources.IOPoai:inspirehep.net:18062322020
spellingShingle Computing and Computers
Carminati, Federico
Khattak, Gulrukh
Loncar, Vladimir
Nguyen, Thong Q
Pierini, Maurizio
Brito Da Rocha, Ricardo
Samaras-Tsakiris, Konstantinos
Vallecorsa, Sofia
Vlimant, Jean-Roch
Generative Adversarial Networks for fast simulation
title Generative Adversarial Networks for fast simulation
title_full Generative Adversarial Networks for fast simulation
title_fullStr Generative Adversarial Networks for fast simulation
title_full_unstemmed Generative Adversarial Networks for fast simulation
title_short Generative Adversarial Networks for fast simulation
title_sort generative adversarial networks for fast simulation
topic Computing and Computers
url https://dx.doi.org/10.1088/1742-6596/1525/1/012064
http://cds.cern.ch/record/2725602
work_keys_str_mv AT carminatifederico generativeadversarialnetworksforfastsimulation
AT khattakgulrukh generativeadversarialnetworksforfastsimulation
AT loncarvladimir generativeadversarialnetworksforfastsimulation
AT nguyenthongq generativeadversarialnetworksforfastsimulation
AT pierinimaurizio generativeadversarialnetworksforfastsimulation
AT britodarocharicardo generativeadversarialnetworksforfastsimulation
AT samarastsakiriskonstantinos generativeadversarialnetworksforfastsimulation
AT vallecorsasofia generativeadversarialnetworksforfastsimulation
AT vlimantjeanroch generativeadversarialnetworksforfastsimulation