Cargando…
Deep learning for certification of the quality of the data acquired by the CMS Experiment
Certifying the data recorded by the Compact Muon Solenoid (CMS) experiment at CERN is a crucial and demanding task as the data is used for publication of physics results. Anomalies caused by detector malfunctioning or sub-optimal data processing are difficult to enumerate a priori and occur rarely,...
Autores principales: | Alan Pol, Adrian, Azzolini, Virginia, Cerminara, Gianluca, De Guio, Federico, Franzoni, Giovanni, Germain, Cecile, Pierini, Maurizio, Krzyżek, Tomasz |
---|---|
Lenguaje: | eng |
Publicado: |
IOP
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1525/1/012045 http://cds.cern.ch/record/2725220 |
Ejemplares similares
-
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment
por: Pol, Adrian Alan, et al.
Publicado: (2018) -
Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider
por: Pol, Adrian Alan, et al.
Publicado: (2018) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Improving data quality monitoring via a partnership of technologies and resources between the CMS experiment at CERN and industry
por: Azzolini, Virginia, et al.
Publicado: (2019) -
Deep learning for inferring cause of data anomalies
por: Azzolini, V., et al.
Publicado: (2017)