Cargando…
Study of CMOS strip sensor for future silicon tracker
Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collecti...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2020.164520 http://cds.cern.ch/record/2729070 |
Sumario: | Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collection. They can provide high position resolution, low material budget, high radiation hardness and low cost that are desirable for high performance tracking in harsh collision environment. Various studies have been conducted to explore the technology feasibility for the large-area tracking systems at future collider experiments. |
---|