Cargando…

Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators

Electron cloud is a critical phenomenon in particle accelerators operating with high intensity and positively charged beams, as it is responsible for beam instabilities, vacuum degradation, and heat load on cryogenic sections. Electron clouds provoke a conditioning of the beam pipe that is reflected...

Descripción completa

Detalles Bibliográficos
Autores principales: Petit, V, Taborelli, M, Zanin, D A, Neupert, H, Chiggiato, P, Belhaj, M
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.23.093101
http://cds.cern.ch/record/2730599
_version_ 1780966568961769472
author Petit, V
Taborelli, M
Zanin, D A
Neupert, H
Chiggiato, P
Belhaj, M
author_facet Petit, V
Taborelli, M
Zanin, D A
Neupert, H
Chiggiato, P
Belhaj, M
author_sort Petit, V
collection CERN
description Electron cloud is a critical phenomenon in particle accelerators operating with high intensity and positively charged beams, as it is responsible for beam instabilities, vacuum degradation, and heat load on cryogenic sections. Electron clouds provoke a conditioning of the beam pipe that is reflected on the reduction of its secondary electron yield (SEY). However, such a benefit is partially lost when vacuum sectors are vented for maintenance of accelerators; this phenomenon is called deconditioning. Samples removed from accelerators are also vented before surface analysis. Deconditioning amplifies the electron cloud at the resuming of beam operation and, on the other hand, hinders the understanding of the electron multipacting mechanism from surface analysis data. In this paper, copper deconditioning was studied for samples stored in a desiccator over months. Immediately after air exposure, an increase of the SEY is observed. This increase is driven by carbon recontamination and copper hydroxide growth on the conditioned surface as observed by x-ray photoelectron spectroscopy. After deconditioning, the differences of SEY present on the tested samples partially vanish, in particular, for surfaces conditioned to a maximum SEY below 1.45, limiting the level of accessible information when analyzing components extracted from accelerators. However, for a maximum SEY above 1.45, the differences remain visible for at least 8 weeks of storage. Among different storage conditions, vacuum efficiently stops the SEY increase over time. Besides, the memory effect of the conditioning is preserved over at least 4 months when closing the vacuum system on itself after venting with a clean and dry gas.
id oai-inspirehep.net-1816893
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling oai-inspirehep.net-18168932020-09-17T22:48:46Zdoi:10.1103/PhysRevAccelBeams.23.093101http://cds.cern.ch/record/2730599engPetit, VTaborelli, MZanin, D ANeupert, HChiggiato, PBelhaj, MImpact of deconditioning on the secondary electron yield of Cu surfaces in particle acceleratorsAccelerators and Storage RingsElectron cloud is a critical phenomenon in particle accelerators operating with high intensity and positively charged beams, as it is responsible for beam instabilities, vacuum degradation, and heat load on cryogenic sections. Electron clouds provoke a conditioning of the beam pipe that is reflected on the reduction of its secondary electron yield (SEY). However, such a benefit is partially lost when vacuum sectors are vented for maintenance of accelerators; this phenomenon is called deconditioning. Samples removed from accelerators are also vented before surface analysis. Deconditioning amplifies the electron cloud at the resuming of beam operation and, on the other hand, hinders the understanding of the electron multipacting mechanism from surface analysis data. In this paper, copper deconditioning was studied for samples stored in a desiccator over months. Immediately after air exposure, an increase of the SEY is observed. This increase is driven by carbon recontamination and copper hydroxide growth on the conditioned surface as observed by x-ray photoelectron spectroscopy. After deconditioning, the differences of SEY present on the tested samples partially vanish, in particular, for surfaces conditioned to a maximum SEY below 1.45, limiting the level of accessible information when analyzing components extracted from accelerators. However, for a maximum SEY above 1.45, the differences remain visible for at least 8 weeks of storage. Among different storage conditions, vacuum efficiently stops the SEY increase over time. Besides, the memory effect of the conditioning is preserved over at least 4 months when closing the vacuum system on itself after venting with a clean and dry gas.oai:inspirehep.net:18168932020
spellingShingle Accelerators and Storage Rings
Petit, V
Taborelli, M
Zanin, D A
Neupert, H
Chiggiato, P
Belhaj, M
Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title_full Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title_fullStr Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title_full_unstemmed Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title_short Impact of deconditioning on the secondary electron yield of Cu surfaces in particle accelerators
title_sort impact of deconditioning on the secondary electron yield of cu surfaces in particle accelerators
topic Accelerators and Storage Rings
url https://dx.doi.org/10.1103/PhysRevAccelBeams.23.093101
http://cds.cern.ch/record/2730599
work_keys_str_mv AT petitv impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators
AT taborellim impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators
AT zaninda impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators
AT neuperth impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators
AT chiggiatop impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators
AT belhajm impactofdeconditioningonthesecondaryelectronyieldofcusurfacesinparticleaccelerators