Cargando…

Astrophysical production of $^{146} \mathrm{Sm}$ in nuclear p - processes

The large time of life of $^{146} \mathrm{Sm}$ suggests the possibility to use this p - nuclide as astrophysical chronometer to study the geochemical galactic evolution. Due to the high temperature and large densities of gamma quanta, neutrons and protons in stellar environment $^{146} \mathrm{Sm}$...

Descripción completa

Detalles Bibliográficos
Autores principales: Oprea, Cristiana, Mihul, Alexandru, Oprea, Alexandru Ioan, Zgura, Sorin, Potlog, Mihai, Neagu, Alina
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/1668/1/012031
http://cds.cern.ch/record/2750000
Descripción
Sumario:The large time of life of $^{146} \mathrm{Sm}$ suggests the possibility to use this p - nuclide as astrophysical chronometer to study the geochemical galactic evolution. Due to the high temperature and large densities of gamma quanta, neutrons and protons in stellar environment $^{146} \mathrm{Sm}$ nucleus can be obtained in (γ,n), (n,2n), (p,2n) processes on $^{146} \mathrm{Sm}$ .The knowledge of corresponding cross sections of gamma rays, neutrons and alpha induced processes is of a great importance for the explanation of ($^{146} \mathrm{Sm}$ /$^{144} \mathrm{Sm}$  ) ratio uncertainties observed on the Earth, meteorites, Moon and other celestial bodies.Cross sections of (γ,n), (n,2n), (α,γ) processes induced by fast gamma rays, neutrons and alphas on $^{147} \mathrm{Sm}$ and $^{142} \mathrm{Nd}$  from threshold up to 25 MeV were evaluated and predicted in the frame of Hauser-Feshbach statistical model by using Talys software and the own computer programs. For each nuclear reaction contribution of direct, compound and pre-equilibrium mechanisms were determined. Theoretical evaluations are compared with existing experimental data. Parameters of optical potential in the incident and emergent channels and of nuclear densities were extracted. Calculated cross sections together with corresponding nuclear data were used in the evaluation of astrophysical rates necessary in the determination of elemental abundances as needed by nuclear astrophysical networks.