Cargando…
Anomaly Detection for CERN Beam Transfer Installations Using Machine Learning
Reliability, availability and maintainability determine whether or not a large-scale accelerator system can be operated in a sustainable, cost-effective manner. Beam transfer equipment (e.g. kicker magnets) has potentially significant impact on the global performance of a machine complex. Identifyin...
Autores principales: | Dewitte, Thiebout, Meert, Wannes, Van Trappen, Pieter, Van Wolputte, Elia |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR010 http://cds.cern.ch/record/2772042 |
Ejemplares similares
-
Anomaly detection for the injection kickermagnets of the CERN Large HadronCollider
por: Dewitte, Thiebout Thomas
Publicado: (2020) -
Overview of the Machine Learning and Numerical Optimiser Applications on Beam Transfer Systems for LHC and Its Injectors
por: Velotti, Francesco, et al.
Publicado: (2022) -
CERN installations for exploitation at high beam intensity
por: Richter, W
Publicado: (1970) -
Stripping Foil Displacement Unit Control for H⁻ Injection in PSB at CERN
por: Van Trappen, Pieter, et al.
Publicado: (2015) -
Options to upgrade the triggering system of the SPS beam dumping system at CERN
por: Rodziewicz, J, et al.
Publicado: (2018)