Cargando…
Super-resolution high-speed optical microscopy for fully automated readout of metallic nanoparticles and nanostructures
We have designed a fully automated optical microscope running at high-speed and achieving a very high spatial resolution. In order to overcome the resolution limit of optical microscopes, it exploits the localized surface plasmon resonance phenomenon. The customized setup using a polarization analyz...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1038/s41598-020-75883-z http://cds.cern.ch/record/2743950 |
Sumario: | We have designed a fully automated optical microscope running at high-speed and achieving a very high spatial resolution. In order to overcome the resolution limit of optical microscopes, it exploits the localized surface plasmon resonance phenomenon. The customized setup using a polarization analyzer, based on liquid crystals, produces no vibrations and it is capable of probing isolated nanoparticles. We tested its performance with an automated readout using a fine-grained nuclear emulsion sample exposed to 60 keV carbon ion beam and, for the first time, successfully reconstructed the directional information from ultra-short tracks produced by such low-energetic ions using a solid-state tracking detector. |
---|